Spelling suggestions: "subject:"weigh syndrome"" "subject:"leigh syndrome""
1 |
Caractérisation de modèles pouvant modifier le métabolisme énergétique mitochondrial : syndrome de Leigh et haplogroupes mitochondriaux / Characterization of models that can modify mitochondrial energy metabolism : leigh syndrome mitochondrial haplogroupsDa Costa, Barbara 21 December 2017 (has links)
Un des rôles de la mitochondrie, qui possède son propre ADN (ADNmt), est la production de l'énergie nécessaire à la cellule, qu'elle synthétise sous forme d'ATP grâce aux oxydations phosphorylantes (OXPHOS). Ainsi, une altération du métabolisme énergétique mitochondrial peut provoquer l'apparition de pathologies mitochondriales dont, généralement, la sévérité est inversement proportionnelle à l'âge de début. De nombreuses études s'intéressent aux mécanismes d'apparition et de développement de ces maladies afin de mieux les comprendre et de pouvoir proposer des thérapies. Cependant, à ce jour, il est encore difficile de transformer l'ADNmt de façon ciblée (remaniement ou mutation). De plus, il existe encore peu de modèles animaux de pathologies mitochondriales qui permettraient de réaliser des études intégratives et d'essayer d'éventuelles molécules thérapeutiques. Dans le cadre de cette thèse, nous avons étudié deux types de modèles impliquant la modification du métabolisme mitochondrial. Dans un premier temps, nous nous sommes intéressés à la réalisation d'un modèle murin exprimant un grand nombre de caractéristiques du syndrome de Leigh, une maladie neurologique progressive. Pour cela nous avons utilisé une neurotoxine (MPTP) qui est connue pour sa toxicité envers les neurones dopaminergiques et aussi comme inhibiteur de la chaine respiratoire. Nous avons analysé l'activité de chaque complexe OXPHOS de différents tissus cérébraux et de tissus périphériques (cœur, foie, muscle et rein), prélevés sur des souris traitées et non-traitées. Nous avons retrouvé une inhibition des complexes III et/ou IV de la chaîne respiratoire dans le foie, le cortex, le striatum et le cervelet. Ces résultats, ajoutés à une neuro- dégénérescence accrue retrouvée dans une étude précédente, sont tous caractéristiques du syndrome de Leigh. Ces souris traitées par le MPTP semblent donc être un bon modèle pour l'étude de cette pathologie mitochondriale. Dans un second projet, nous nous sommes intéressés à l'effet des haplogroupes de l'ADNmt sur le métabolisme mitochondrial. En effet, bien qu'ils soient définis par des mutations neutres de l'ADNmt (polymorphismes), plusieurs études ont démontré des associations entre les haplogroupes et les pathologies, suggérant que les haplogroupes sont capables d'avoir un effet protecteur ou aggravant dans l'apparition d'une pathologie. Récemment, notre laboratoire a montré que certains haplogroupes avaient la capacité d'influencer le fonctionnement du métabolisme énergétique mitochondrial. Mon projet de recherche a donc consisté à mettre en place un modèle afin d'étudier les mécanismes cellulaires et moléculaires impliqués dans ce phénomène. Pour cela, nous avons recherché des haplogroupes d'intérêt dans la population française afin d'élaborer une collection de " cybrides " où chaque lignée de cellules possède un haplogroupe particulier mais un fonds génétique nucléaire commun à toutes les lignées. Nous avons caractérisé ces cybrides de manière biochimique (analyse de l'activité et des paramètres cinétiques de chaque complexe) et phénotypique (courbes de croissance). L'ensemble de ces résultats a été intégré dans un modèle informatique spécifiquement développé dans notre laboratoire pour modéliser la physiologie de la mitochondrie. Ce projet nous a permis de mettre en évidence l'influence des haplogroupes de l'ADNmt sur le métabolisme mitochondrial et de proposer une vision modulée des pathologies mitochondriales tant pour leur étude que pour leur diagnostic, en faisant ressortir la notion de médecine personnalisée. A l'avenir, il sera nécessaire de tenir compte du contexte génétique de l'ADNmt pour trouver de nouvelles stratégies ou de nouvelles cibles pour les thérapies des maladies mitochondriales. / The mitochondrion is an intracellular organelle responsible for the cellular energy production, by synthesizing ATP through the oxidative phosphorylation (OXPHOS). One of the characteristics of this organelle is that it has its own DNA (mtDNA) encoding for subunits of OXPHOS complexes. Any alterations of mitochondrial energy metabolism cause mitochondrial pathologies whose severity is generally inversely proportional to the age of onset. Some scientific studies are looking at the mechanisms of occurrence and development of these diseases in order to better understand them and to be able to offer therapies. However, there is no tool that can transform mtDNA in a targeted way by mutation or DNA rearrangement. Moreover, there are still few animal models of mitochondrial pathology that would allow integrative studies on the one hand, and on the other hand, to try out possible therapeutic molecules. In this thesis, we studied two types of models involving the modification of mitochondrial metabolism either by chemical treatment or by the use of mutations found in individuals. In a first part, we were interested in the realization of mouse model with a large number of characteristics of the Leigh syndrome, a progressive neurological disease characterized by neuropathological lesions associating a damage of the brain stem and the basal ganglia. For this study, we have used the 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) neurotoxin, known for its toxicity to dopamine neurons and also as an inhibitor of mitochondrial respiratory chain. We analyzed the activity of the OXPHOS complexes I to IV on brain tissues (cerebelum, cortex, striatum and substancia nigra) and peripheral tissues (heart, liver, muscle and kidney) from treated and untreated mice. Inhibition of complexes III and/or IV in the liver, cortex, striatum and cerebellum was found. These results, combined with an increased neurodegeneration found in a previous study, are all characteristics of Leigh Syndrome. Mice treated with MPTP seem to be a good model for this mitochondrial pathology. In the second project, we looked at the effect of mtDNA haplogroups (haplotypes grouping) on mitochondrial metabolism. Although, haplogroups are defined by neutral mutations of mtDNA (polymorphism), several studies have shown associations between haplogroups and some pathologies suggesting that haplogroups are able to have a protective effect or being a risk factor in the pathology development. Recently, our laboratory has confirmed that some haplogroups may not be neutral and have the ability to influence the mitochondrial energy metabolism functioning. Therefore, my research project consisted of setting up a model to study these cellular and molecular mechanisms. We looked for haplogroups of interest in the population in order to elaborate a cellular collection where each cell line has a particular haplogroup but with a common nuclear genetic background in all the cell lines. This collection was obtained by cybride constructions. We characterized these cybrides biochemically by analyzing the activity of each complex, determining kinetic parameters (KM and Vmax) and titration specific respiratory chain inhibitors. Concomitantly, we defined cell parameters via growth curves. All these results were integrated into a computer model specifically developed in our laboratory to model mitochondrial processes. This project gives us some evidence of the mtDNA haplogroups' influence on mitochondrial metabolism and to propose a modulated vision of mitochondrial pathologies for their study and their diagnosis, highlighting the notion of personalized medicine. As each haplogroup modulates in the different way the mitochondrial metabolism, each individual could have a personal response to the same mutation or pathology. In future, the mtDNA genetics background should be taken into account to find new strategies or new targets for the therapies of mitochondrial diseases.
|
2 |
Regulace a poruchy savčí cytochrom c oxidázy. / Regulation and Disorders of Mammalian Cytochrome c OxidaseKovářová, Nikola January 2016 (has links)
Cytochrome c oxidase (COX) represents the terminal enzyme complex of respiratory chain metabolic pathway and it occurs as monomer, dimer or as a part of respiratory supercomplexes in the inner mitochondrial membrane. COX assembly process is complicated, highly regulated and depends on many ancillary proteins. Mutations in COX subunits, which are encoded by mitochondrial and nuclear DNA, or in genes encoding its assembly proteins are frequent cause of very severe mitochondrial disorders. SURF1 assembly protein participates in the first steps of COX assembly, but its exact function is not yet clarified. In humans, mutations of SURF1 gene lead to severe COX defect and fatal neurodegenerative disorder, Leigh syndrome. Knockout of SURF1 gene in mouse causes isolated COX defect as well, but less pronounced and without involvement of CNS. The aim of the thesis was detailed analysis of disturbed COX biogenesis in a condition of SURF1 gene mutations or SURF1 gene knockout, from assembly of COX monomer to interaction of COX into supercomplexes, and to the impact of isolated COX defect on other OXPHOS complexes. Mutations of SURF1 gene in patient's fibroblasts led to marked accumulation of COX assembly intermediates and to a defect in formation of functional COX monomer, which was preferentially built into an...
|
3 |
Regulace a poruchy savčí cytochrom c oxidázy. / Regulation and Disorders of Mammalian Cytochrome c OxidaseKovářová, Nikola January 2016 (has links)
Cytochrome c oxidase (COX) represents the terminal enzyme complex of respiratory chain metabolic pathway and it occurs as monomer, dimer or as a part of respiratory supercomplexes in the inner mitochondrial membrane. COX assembly process is complicated, highly regulated and depends on many ancillary proteins. Mutations in COX subunits, which are encoded by mitochondrial and nuclear DNA, or in genes encoding its assembly proteins are frequent cause of very severe mitochondrial disorders. SURF1 assembly protein participates in the first steps of COX assembly, but its exact function is not yet clarified. In humans, mutations of SURF1 gene lead to severe COX defect and fatal neurodegenerative disorder, Leigh syndrome. Knockout of SURF1 gene in mouse causes isolated COX defect as well, but less pronounced and without involvement of CNS. The aim of the thesis was detailed analysis of disturbed COX biogenesis in a condition of SURF1 gene mutations or SURF1 gene knockout, from assembly of COX monomer to interaction of COX into supercomplexes, and to the impact of isolated COX defect on other OXPHOS complexes. Mutations of SURF1 gene in patient's fibroblasts led to marked accumulation of COX assembly intermediates and to a defect in formation of functional COX monomer, which was preferentially built into an...
|
Page generated in 0.0395 seconds