• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 5
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 25
  • 25
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lentiviral mediated gene delivery to human antigen presenting cells

Neil, Stuart John Douglas January 2001 (has links)
No description available.
2

Identification of ebola glycoprotein mutants that exhibit increased transduction efficiency

Sandersfeld, Lindsay Marie 01 December 2009 (has links)
Gene delivery via lentiviruses can yield long term expression of transgenes. Specificity of host cell targeting by viral vectors occurs primarily through viral glycoprotein (GP)/cellular receptor interactions. Ebola virus (EBOV) GP has broad tropism for a variety of cell types making this viral GP a potentially useful reagent for delivery of gene therapy. However, titers of EBOV GP pseudotyped lentiviruses are insufficient for practical use in clinical applications. Enhancement of EBOV-GP pseudotyped titers by as little as half a log might yield clinically applicable titers. In an alanine scanning study, we identified 19 residues in EBOV-GP1 that increased transduction efficiency two to three fold. When mapped onto the crystal structure of EBOV GP, these residues were primarily located at the interface of GP1/GP2 suggesting these residue substitutions may confer conformational changes in the protein structure thereby enhancing transduction efficiency. To determine if combinations of these alanine substitutions might further enhance transduction, we have introduced the changes into EBOV GP in a stepwise manner. To date, introduction of some combinations of alanine substitutions resulted in as much as an eight-fold increase in transduction over WT GP, this being our super mutant combination, whereas other combinations eliminated transduction. Identification of 5 additional mutations via 3D modeling of the glycoprotein uncovered an additional mutation in GP2, located at the GP1/GP2 interface, which also enhances EBOV GP transduction. Transduction of cell lines important for gene therapy including hepatocytes and porcine airway cells confirmed an enhancement in transduction as well. Other cell populations, specifically fibroblasts and renal cells, were also transduced but enhanced transduction was not observed indicating this phenomenon may be cell type specific. The in vivo studies were inconclusive because no expression was detected from any of the EBOV GP pseudovirions. Even expression of the positive control, GP64 particles, waned after 3 weeks post inoculation indicating insufficient quantities or poor quality pseudovirions were used. These EBOV GPs should prove useful for future gene therapy studies by providing an alternate glycoprotein that is as effective as GP64 at producing high titer lentiviral vectors.
3

Small molecule stimulators for enhanced yield of human hematopoietic stem cells / Petites molecules stimulatrices pour un rendement accru en cellules souches hématopoietiques humaines

Ngom, Mor 27 September 2017 (has links)
Une transduction efficace des cellules souches hematopoïetiques est un préalable pour la thérapie génique des maladies génétiques comme la β‐thalassemie, l’Adrenoleucodystrophie et le Déficit Immunitaire Combiné Sévère. La petite molécule UM171 à été décrite comme étant une molécule capable de stimuler l’expansion in vitro des cellules souches hématopoïétiques humaines, permettant ainsi une plus large application des thérapies basées sur les cellules souches. Nous avons aussi conduit des études supplémetaires pour confirmer la capacité de UM171 à expandre les souches hématopoïétiques. Durant ce travail, nous avons découvert que UM171 pouvait aussi augmenter de maniére significative, l’efficience de la transduction lentivirale des cellules hématopoïetiques primitives dérivées de sang de cordon. En plus, nous avons montré que UM171 augmentait la transduction des cellules hématopoïeques ayant les phénotypes les plus immatures. Des études plus approfondies ont aussi révélé que UM171 pouvait aussi augmenter la transduction des cellules souches hématopoïétiques avec des lentivirus ayant diffèrent pseudotypes. Au total ces découvertes ont pour conséquence, une nette amélioration des protocoles d’expansion et de transduction des cellules souches hématopoïétiques à travers un meilleur rendement en cellules souches et des taux élevés de transfert de gène en utilisant des quantités réduites de particules virales / Efficient lentiviral gene transfer to hematopoietic stem cells is a prerequisite for theultimate goal of gene therapy for a range of major genetic diseases such as β‐thalassemia, Adrenoleucodystrophy and severe combined immnodeficiency. The small molecule UM171 was recently described as having potent ability to stimulate ex vivo expansion of human hematopoietic stem cells, another key to safer and wider application of stem cell mediated therapies. Here we have conducted additional studies to confirm the stem cell expansion properties of UM171 and in the course of this work discovered that it also has the ability to significantly enhance the efficiency of the lentiviral transduction of primitive hematopietic cells in human cord blood. Subsequent work confirmed that this enhancing effect extends importantly to the most primitive hematopoietic subset as assessed phenotypically and by functional readout in immunodeficient mouse xenografts. Further detailed characterization ofthis phenomenom revealed that UM171’s effects are manifest rapidly and extend to a range of lentiviral pseudotypes. Together these findingsprovide an avenue for improved protocols for hematopoietic stem cell transduction that achieve higher gene efficiency and stem cell recovery coupled with the potential for reduced viral titer requirements.
4

Impacts du design de vecteurs dérivés du VIH-1 et de la machinerie de réparation de l'ADN sur l'expression lentivirale / Impacts of the Design of Vectors Derived From VIH-1 and of the DNA Repair Machinery on Lentiviral Expression

Manic, Gwenola 28 September 2012 (has links)
Une meilleure connaissance des déterminants viraux et cellulaires impliqués dans la régulation de l’expression lentivirale est essentielle pour (i) maitriser l’expression d’un transgène dans le cadre d’un transfert de gène et (ii) mieux comprendre l’absence/la perte de l’expression du virus de l’immunodéficience humaine de type 1 (VIH-1) observé en cas de latence virale après infection. Dans ce contexte, les facteurs cellulaires impliqués dans la reconnaissance et la réparation des cassures de l'ADN, activés dès les étapes précoces du cycle viral, pourraient participer au contrôle de l’expression rétrovirale. Dans la première partie de cette étude, nous avons généré une collection de vecteurs lentiviraux codant le transgène green fluorescent protein (gfp) avec des design variés : promoteur du VIH-1 [long terminal repeat (LTRs)] ou d’origine hétérologue [e.g., promoteur viral CMV (cytomegalovirus), ou humain PGK (phosphoglycerate kinase)], intégrase native ou mutée, LTRs natifs ou self inactivating (SIN). En particulier, nous avons caractérisé l’impact de l’insertion de différentes séquences hétérologues au sein des SIN-LTRs sur l’expression du transgène gfp au cours du temps dans un contexte compétent ou déficient pour l’intégration. Nous avons mis en évidence un phénomène de modulation du niveau d’expression du transgène (d’un facteur 0,3 à 1,8; comparé aux vecteurs sans insertion) qui est dépendant de la séquence insérée et de son orientation. L’expression transgénique résulterait donc d’une balance coûts/bénéfices associés à l’insertion d’éléments aux extrémités des vecteurs qui pourrait déterminer le niveau d’expression du transgène à partir de vecteurs modifiés. Dans la seconde partie, nous avons réalisé une analyse systématique et comparative de l’expression lentivirale au sein des cellules humaines de carcinome de côlon HCT 116 déplétées pour le complexe Ku. Ce complexe, qui est essentiel à la survie chez l’homme et est impliqué dans les processus de réparation de l’ADN, a été identifié comme une cible anti-VIH potentielle. Nous avons mis en évidence que la déplétion en Ku induit une diminution de l’expression précoce du VIH-1 de façon spécifique du LTR et indépendante de Tat. Même si l’action de Ku nécessite l’intégration du VIH-1, sa déplétion ne modifie pas l’efficacité d’intégration virale mais agit plutôt au niveau transcriptionnel. Da façon importante, la réactivation de l’expression du transgène après traitement par l’activateur de NF-κB (Nuclear Factor κB), le TNFα (tumor necrosis factor α) ou un inhibiteur des déacétylases d’histones, la trichostatine A est favorisée par la déplétion en Ku. A l’inverse, en présence d’un niveau normal en Ku, les cellules exprimant le VIH-1 seraient contre-sélectionnées dans le temps. Ainsi, la déplétion en Ku pourrait promouvoir l’établissement d’un état (reactivable) de latence transcriptionelle associé à une moindre contre-sélection des cellules transduites. Les résultats issus de ce travail de thèse démontrent que l’expression lentivirale varie en fonction de nombreux paramètres, dont (i) le design des vecteurs, (ii) le type cellulaire transduit et son fond génétique, et (iii) le temps écoulé depuis la transduction, reflétant ainsi des interactions différentielles entre le vecteur et son hôte. / An improved knowledge of the viral and cellular determinants implicated in the regulation of the lentiviral gene expression is crucial (i) for a better control of transgene expression in strategies designed for gene transfer and (ii) for uncovering the mechanisms of viral latency observed after infection with the human immunodeficiency virus type 1 (HIV-1) and accounting for the absence/loss of HIV-1 expression. Cellular factors involved in the mechanism of detecting/repairing DNA lesions are largely activated during the initial steps of viral cycle and, thus, may participate in the control of lentiviral expression. In the first part of this study, we generated a set of lentiviral vectors encoding for the transgene green fluorescent protein (gfp) with various design: the original promoter [long terminal repeat (LTRs)] or of heterologuous origins (e.g., the viral cytomegalovirus, CMV or the human phosphoglycerate kinase, PGK), wild-type or mutated integrase and wild-type or self inactivating (SIN) LTRs. By taking advantage of these constructs, we characterized the impact of the insertion of distinct heterologuous sequences within SIN-LTRs on the expression of gfp over the time in conditions of proficiency or deficiency for the integration. We put in evidence a phenomenon of modulation of the level of the transgene expression due to the insertion (by a factor of 0.3 to 1.8, as compared to vectors without insert) that was dependant from the nature and/or the orientation of the insert. We speculate that a balance between the costs and the benefits associated to insertion at the extremities of lentiviral vectors may dictates the level expression of transgene from this engineered construct.In the second part, we performed a systematic and comparative analysis of the lentiviral expression on human HCT 116 colon carcinoma cells depleted from the complex Ku. This complex, which is essential for the survival in humans and has a described role in DNA repair process, has been previously identified as a potential target against HIV-1. Here, we showed that Ku depletion induced a decrease of the HIV-1 early expression in a fashion that was specific for LTR and independent from Tat. Although Ku action needed HIV-1 integration to host genome, its depletion did not modify the viral integration efficiency but rather acted at transcriptional level. Importantly, the reactivation of transgene expression by administering either the NF-κB (Nuclear Factor κB) activator, tumor necrosis factor α (TNFα) or the histone deacetylase inhibitor named trichostatin A was favored in a condition of Ku depletion. On the contrary, in presence of normal level of Ku, cells expressing HIV-1 displayed a high level of counter-selection over the time. Thus, our observations pleased to favor the hypothesis that Ku depletion promotes the establishment of a state of (reactivable) transcriptional latency associated to a lesser counter-selection of transduced cells. Altogether, the results obtained during this thesis demonstrate that lentiviral expression vary depending on (i) specific vector design, (ii) the transduced cell line and its genetic backbone, and (iii) the time elapse from transduction, as a consequence of modified interactions between the vector and its host.
5

Development of Novel Cell Fate Control Gene Therapy for Applications in Cancer and Immune Disorders

Neschadim, Anton 11 January 2012 (has links)
Cellular therapies rely on the delivery of therapeutic cells into patients, but their safety can be compromised by the manipulation of cells ex vivo or their placement outside of their natural context in vivo. Cell Fate Control Gene Therapy (CFCGT) offers the possibility of establishing pharmacological controls over gene-modified cells (GMCs) with regards to their proliferation, differentiation, or function. In its simplest form, 'suicide' gene therapy (SGT), stable introduction of a 'suicide' gene that can activate a non-toxic prodrug establishes control over the survival of GMCs. Current SGT modalities are sub-optimal in clinical setting. To overcome the many limitation of current strategies, we have developed a next-generation CFCGT approach based on the active site-engineered variants of human deoxyCytidine Kinase (dCK), which enable robust activation of multiple Nucleoside Analogue (NA)-based prodrugs, act early in the pathway enabling rapid accumulation of activated NAs in target cells, and also provide the capabilities for the direct imaging of GMCs. Stable introduction of dCK variants into target cells by means of Lentiviral (LV) gene transfer significantly increases their sensitivity to multiple prodrugs. Our dCK variant with only two active site amino acid substitutions is expected to be non-immunogenic yet capable of specifically activating deoxythymidine- and deoxyuridine-based NAs that are not substrates for the wild-type enzyme, such as bromovinyldeoxyuridine (BVdU) and L-deoxythymidine (LdT). We show here that dCK can be used for controlling the survival of GMCs, in cell lines and primary cells in vitro and in a murine xenogeneic transplant models in vivo. To characterize dCK/prodrug-mediated killing mechanisms in GMCs, we have examined the levels of active metabolites in cells and the cellular pathways they antagonize. We describe here the experimental basis for the application of this novel CFCGT in bone marrow transplantation for management of Graft-versus-Host Disease (GvHD) and in enhancing chemotherapy in direct treatment of tumors. In summary, we have developed a novel and robust strategy for effective CFCGT that addresses the many shortcomings of existing modalities. Future studies will validate this novel system in a variety of primary cells and animal disease models, including models of hematopoietic transplantation and ES/iPS-based cell therapies.
6

Development of Novel Cell Fate Control Gene Therapy for Applications in Cancer and Immune Disorders

Neschadim, Anton 11 January 2012 (has links)
Cellular therapies rely on the delivery of therapeutic cells into patients, but their safety can be compromised by the manipulation of cells ex vivo or their placement outside of their natural context in vivo. Cell Fate Control Gene Therapy (CFCGT) offers the possibility of establishing pharmacological controls over gene-modified cells (GMCs) with regards to their proliferation, differentiation, or function. In its simplest form, 'suicide' gene therapy (SGT), stable introduction of a 'suicide' gene that can activate a non-toxic prodrug establishes control over the survival of GMCs. Current SGT modalities are sub-optimal in clinical setting. To overcome the many limitation of current strategies, we have developed a next-generation CFCGT approach based on the active site-engineered variants of human deoxyCytidine Kinase (dCK), which enable robust activation of multiple Nucleoside Analogue (NA)-based prodrugs, act early in the pathway enabling rapid accumulation of activated NAs in target cells, and also provide the capabilities for the direct imaging of GMCs. Stable introduction of dCK variants into target cells by means of Lentiviral (LV) gene transfer significantly increases their sensitivity to multiple prodrugs. Our dCK variant with only two active site amino acid substitutions is expected to be non-immunogenic yet capable of specifically activating deoxythymidine- and deoxyuridine-based NAs that are not substrates for the wild-type enzyme, such as bromovinyldeoxyuridine (BVdU) and L-deoxythymidine (LdT). We show here that dCK can be used for controlling the survival of GMCs, in cell lines and primary cells in vitro and in a murine xenogeneic transplant models in vivo. To characterize dCK/prodrug-mediated killing mechanisms in GMCs, we have examined the levels of active metabolites in cells and the cellular pathways they antagonize. We describe here the experimental basis for the application of this novel CFCGT in bone marrow transplantation for management of Graft-versus-Host Disease (GvHD) and in enhancing chemotherapy in direct treatment of tumors. In summary, we have developed a novel and robust strategy for effective CFCGT that addresses the many shortcomings of existing modalities. Future studies will validate this novel system in a variety of primary cells and animal disease models, including models of hematopoietic transplantation and ES/iPS-based cell therapies.
7

Developing novel techniques for primate neural network analyses by retrograde gene transfer with viral vectors / ウイルスベクターによる逆行性遺伝子導入を利用した霊長類の神経ネットワーク解析のための新規技術開発

Tanabe, Soshi 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22297号 / 理博第4611号 / 新制||理||1661(附属図書館) / 京都大学大学院理学研究科生物科学専攻 / (主査)教授 高田 昌彦, 教授 中村 克樹, 教授 濱田 穣 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
8

A systemically-delivered stem cell therapy for dry age related macular degeneration

Pay, Samantha Louise 27 June 2017 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Dry age-related macular degeneration (AMD) is a progressive neurodegenerative disorder characterized by geographical atrophy of the retinal pigment epithelium (RPE), causing irreversible central vision loss. Systemically-delivered bone marrow-derived cells (BMDCs), programmed to RPE-like cells via expression of human RPE65, regenerate damaged RPE and preserve vision in murine models of retinal degeneration. RPE65 rapidly activates adenylate cyclase (AC), which then activates endogenous Rpe65 and RPE-associated marker Cralbp. Previous studies expressed RPE65 from an integrating lentiviral vector (ILV), which is an unnecessary safety risk due to the potential for insertional mutagenesis, as long- term expression of RPE65 is not required for BMDC programming. Here, we developed a 3rd generation integrase-defective lentiviral vector (IDLV) for programming both murine and human BMDCs to RPE-like cells, reducing insertional mutagenesis risk and expanding the protocol to include human cells. We enhanced IDLV3-RPE65 infection of murine and human BMDCs by preloading concentrated vector on RetroNectin at MOI 50, and infecting with low-speed centrifugation, increasing RPE65 mRNA levels from ~12-fold to ~25-fold (p<0.05). IDLV3-RPE65 infection initiates expression of endogenous Rpe65 mRNA expression in murine BMDC and Cralbp/CRALBP mRNA in both murine and human BMDCs, indicating programming to RPE-like cells. Inhibiting AC in RPE65infected BMDCs abrogated expression of the endogenous genes, confirming the role of AC activation in programming. Critically, IDLV3-RPE65-infected murine BMDCs are recruited to and incorporate into to the RPE layer, and preserve vision in murine models of retinal degeneration. We conclude that BMDCs programmed with IDLV3-RPE65 successfully prevent retinal degeneration progression and are appropriate for testing in human cells, with a view to move into human clinical trial for the treatment of dry AMD. This approach significantly increases the safety of the therapy and is, to the best of our knowledge, the first application of a single IDLV in the generation of therapeutic cells from adult stem cells.
9

Geração de células de pluripotência induzida (iPS) humanas utilizando vetores lentivirais e determinação do perfil de integração lentiviral / Generation of human induced pluripotent stem (iPS) cell using lentiviral vector and determination of the lentiviral integration profile

Reis, Luiza Cunha Junqueira 28 November 2012 (has links)
As células iPS surgiram com a promessa de contornar as limitações das células-tronco embrionárias, como questões éticas, segurança, compatibilidade e disponibilidade. Essas células podem ser obtidas a partir de células somáticas de indivíduos normais ou de pacientes com doenças genéticas, fazendo destas uma importante ferramenta para o screening de drogas, modelos de doenças e testes toxicológicos. Grandes avanços ocorreram na reprogramação de células diferenciadas pela expressão forçada de fatores de transcrição (FT), principalmente, através de vetores lentivirais (VL), que proporcionam uma reprogramação eficiente. Entretanto, a inserção lentiviral no genoma humano e sua influência na reprogramação é pouco conhecida. Neste trabalho, avaliamos o perfil de inserção dos VL utilizados na geração de iPS. As iPS foram geradas e caracterizadas por nosso grupo a partir de fibroblastos humanos transduzidos com VL contendo 3 FT [SOX2, TCL-1A e C-MYC (célula TSM)], e de células mesenquimais derivadas de tecido adiposo com um vetor lentiviral policistrônico contendo 4 FT [OCT4, SOX2, KLF4 e C-MYC (iPS 4FT)]. Cinco colônias isoladas de cada iPS foram mapeadas e analisadas quanto aos sítios de inserção pela técnica de LM-PCR. O DNA genômico digerido foi amplificado com um primer específico para o LTR viral e outro para um linker sintético. Os produtos foram clonados, sequenciados, e analisados em bancos de dados para identificar similaridades com o genoma humano, entre outras análises. Na célula TSM, 176 sequências, obtidas com a técnica de LM-PCR, apresentaram identidade com o genoma humano, sendo que cerca de 50% ocorreram em regiões gênicas com 94% destas em introns. Já nas iPS 4FT, 251 sequências apresentaram identidade, com cerca de 45% atingindo genes, 92% destas em introns. As inserções distribuíram-se por todos os cromossomos, com preferência pelos cromossomos 16, 17 e 20 para a TSM e pelos cromossomos 11, 15 e 17 para a iPS 4FT. Analisamos a distância da inserção ao sítio de início de transcrição (TSS), e inserções próximas a ilhas CpG, que em geral correspondem a regiões regulatórias. A maior proporção de inserção ocorreu a partir de ±30Kb de distância desses sítios. Os sítios frágeis e as regiões repetitivas do genoma foram atingidas, mas com uma frequência baixa. Os resultados mostraram uma preferência de inserção lentiviral por regiões gênicas nas iPS, indicando a possível participação de proteínas como LEDGF/p75 na integração nas células estudadas. Este trabalho mostrou que o local da integração pode contribuir para a reprogramação e, apesar de possíveis efeitos negativos das integrações, estas as células iPS ainda são uma ferramenta importante para estudos in vitro. E identificar fatores que influenciem a seleção do sítio de inserção é importante para determinar regiões cromossômicas \"seguras\" para a integração, aumentando a segurança no uso clínico. / The induced pluripotent stem (iPS) cells came with the promise of circumvent some of the limitations in the use of embryonic stem cells, like ethical issues, biological safety, immune compatibility and availability. This cells can be generated from somatic cells of normal individuals or from patients with some genetic disease, making then an important tool for drug screening, construction of disease models and toxicological trials. Great advances have happened in reprogramming differentiated cells through the forced exogenous expression of transcription factors (TF), mostly by lentiviral vectors (LV), which provide an efficient reprogramming. However, the lentiviral insertion in the human genome and its influence in reprogramming is not well known. In this work, we evaluate the insertion profile of LV used to generate human iPS cells. The iPS cells were generated, by our group, from human fibroblasts transduced by LV containing 3 TF [SOX2, TCL-1A and C-MYC (TSM reprogrammed cell)], and from mesenchymal cells derived from human adipose tissue transduced by a polycistronic LV containing 4 TF [OCT4, SOX2, KLF4 and C-MYC (iPS 4TF)]. Five isolated colonies of each iPS cell were mapped and analyzed for the insertion sites through LM-PCR technique. The digested genomic DNA was amplified with a primer for the viral LTR e another for a synthetic linker. The products were cloned, sequenced and analyzed in database to identify similarities with the human genome, among other analyzes. In TSM cell, 176 sequences, derived from the LM-PCR technique, presented identity with the human genome, and about 50% of those occurred in genic regions with 94% in introns. In iPS 4TF, 251 sequences showed identity, with about 45% reaching genes, 92% of these in introns. The insertions were distributed on all chromosomes, with preference for the 16, 17 and 20 for the TSM cell, and for the 11, 15 and 17 for the iPS 4TF. We analyzed the distance of the insertion from de transcription start site, and insertions near CpG islands, which, overall, correspond to regulatory regions. The highest proportion of insertion occurred starting ±30Kb distance from these sites. The fragile sites and the repetitive regions of the genome were also reached, but with low frequency. The results showed a preference of lentiviral insertion for genic regions in iPS, indicating the potential participation of proteins like LEDGF/p75 in integration in the cells of this work. This work shows that the integration site may contribute to the reprogramming, and, despite possible negative effects of integration, these iPS cells are still an important tool for in vitro studies. Identify factors that influence the selection of insertion site is important for determination of \"safe\" chromosomal regions for the integration, increasing the safe in clinical use.
10

Clonagem e expressão de fator IX recombinante em células 293T e SK-Hep-1 e caracterização das células produtoras / Cloning and expression of recombinant factor IX in 293T and SK-Hep-1 cells and characterization of producing cells

Bomfim, Aline de Sousa 27 September 2013 (has links)
O fator IX (FIX) da coagulação sanguínea é uma proteína dependente de vitamina K de grande valor farmacêutico no tratamento da Hemofilia B, o qual é baseado na administração do fator de coagulação derivado de plasma humano ou da proteína recombinante produzida em células murinas. A terapia baseada nestas abordagens apresenta alto custo e está associada às contaminações com vírus e príons, além do desenvolvimento de inibidores de FIX. Esses efeitos aumentam o risco de morbidade e mortalidade relacionadas às hemorragias. Neste trabalho, clonamos o cDNA do FIX em um vetor lentiviral e avaliamos a expressão da proteína recombinante em duas linhagens celulares humanas. A clonagem do cDNA do FIXh no vetor de expressão lentiviral 1054 foi confirmada através da análise com enzimas de restrição específicas obtendo-se as bandas esperadas de 1407 pb e 10054 pb visualizadas em gel de agarose. As linhagens celulares 293T e SK-Hep-1 foram transduzidas com o vetor lentiviral 1054-FIX gerado em nosso laboratório e as células que apresentaram maior expressão de EGFP foram selecionadas e separadas por citometria de fluxo. A quantificação da expressão de FIXrh foi realizada por ensaios de ELISA e cromogênico. A quantificação de FIXrh total foi de 500 ng/106 células para a linhagem 293T e 803 ng/106 células para a linhagem SK-Hep-1. A atividade biológica específica de FIXh nas células 293T e SK-Hep-1 foi 0,047 UI/106 células e 0,186 UI/106 células, respectivamente. Com o intuito de avaliar o perfil de produção de FIXrh ativo ao longo do tempo, foi realizado um acompanhamento de 180 dias, no qual foi observado que a linhagem SK-Hep-1 cessou a expressão de FIX, enquanto as células 293T mantiveram a expressão durante o período. O FIXrh foi caracterizado por western blot confirmando a presença de uma banda imunoreativa esperada de 57 kDa. As linhagens 293T e SK-Hep-1 apresentaram 7,67 e 17 cópias do vetor inserido/célula, respectivamente. Considerando a importância do processo de ?-carboxilação, foi realizada uma análise da expressão gênica dos genes envolvidos neste processo, tais como o VKORC1, ?-carboxilase e o inibidor calumenina, nas linhagens celulares. Os resultados demonstraram razões elevadas entre os genes VKORC1 e calumenina e VKORC1 e ?-carboxilase nas duas linhagens. A cinética de crescimento das células foi realizada por um período de 7 dias apresentando diferenças significativas entre as células SK-Hep-1 transduzidas e não transduzidas, enquanto que as células 293T não presentaram diferenças estatísticas no crescimento celular. A suplementação do meio de cultura com íons Ca+2 e Mg+2 foi testada para avaliar sua influência na expressão de FIXrh ativo. As células 293T apresentaram melhor desempenho nas concentrações de 0,5 mmol/L de Ca+2 e 1,0 mmol/L de Mg+2 e as células SK-Hep-1 no meio de cultura não suplementado. Nossos dados indicam que a linhagem hepática SK-Hep-1 é a melhor produtora de FIXrh funcional e as comparações realizadas entre os dois tipos celulares são importantes na caracterização do comportamento de linhagens geneticamente modificadas voltadas para a expressão de proteínas recombinantes heterólogas e abre novos caminhos para futuros estudos que visam o melhoramento da produção desse tipo de proteína. / Blood coagulation factor IX is a vitamin K-dependent protein, and it has become a valuable pharmaceutical in the treatment of Hemophilia B which is based on the plasma-derived coagulation factors or recombinant protein produced in murine cells. Coagulation therapy based on these approaches has high costs and is closely associated with prion and virus contamination besides the FIX inhibitors development. These effects increase the risk for bleeding-related morbidity and mortality. The purpose of this study was to clone hFIX into a lentiviral vector and evaluate the expression of the recombinant protein in two human cell lines. The cloning of the hFIX cDNA into 1054 lentiviral expression vector was confirmed by enzymatic restriction obtaining the expected 1407 bp and 10054 bp bands in agarose gel. The 293T and SK-Hep-1 cell lines have been stable transduced with 1054-FIX lentiviral vector generated in our laboratory and the cells with higher expression of EGFP were selected and separated by flow cytometry. The quantification of the expression of rhFIX was performed by ELISA and chromogenic assays. The concentration of total rhFIX was 500 ng/106 cells in 293T cell line and 803 ng/106 cells in SK-Hep-1 cell line. The biological activity of FIX secreted by 293T and SK-Hep-1 was 0,047 UI/106 cells and 0,186 UI/106 cells, respectively. In order to evaluate the active rhFIX production profile over time, we conducted a monitoring of 180 days, which was noted that the SK-Hep-1 cell line ceased FIX expression, while 293T cells maintained the expression during this period. rhFIX was characterized by western blot analysis confirming the presence of a expected 57 kDa immunereactive band. The 293T and SK-Hep-1 cell lines showed 7.67 and 17 integrated vector copies/cell, respectively. Considering the importance of the ?-carboxylation process, we performed a gene expression analysis of genes involved in this process, such as VKORC1, ?-carboxylase and calumenin, in cell lines. The results showed high ratios among the genes VKORC1 and calumenin and among VKORC1 and ?-carboxylase in both cell lines. The cell growth kinetics was performed by a 7-day period, showed significant differences between SK-Hep-1 transduced cells and non-transduced cells, whereas 293T cells showed no difference in cell growth. Enrichment of culture medium with Ca +2 and Mg +2 ions was tested to evaluate its influence on the expression of active FIX. 293T cells showed better performance in 0.5 mmol/L Ca+2 and 1.0 mmol/L Mg +2 concentrations and SK-Hep-1 cells in culture medium control. Our data indicate that transduced SK-Hep-1 cells are the best producer of functional rhFIX, and comparisons between these two cell lines are important in characterizing the behavior of genetically modified cell lines focused on the heterologous expression of recombinant proteins and opens new avenues for future studies aimed at improving the production of this type of protein.

Page generated in 0.4729 seconds