• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 6
  • 2
  • 1
  • Tagged with
  • 23
  • 23
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Dynamische Neuronale Netzarchitektur für Kontinuierliches Lernen

Tagscherer, Michael 01 May 2001 (has links)
Am Beispiel moderner Automatisierungssysteme wird deutlich, dass die Steuerung und optimale Führung der technischen Prozesse eng verbunden ist mit der Verfügbarkeit eines möglichst exakten Prozessmodells. Steht jedoch kein Modell des zu steuernden Systems zur Verfügung oder ist das System nicht ausreichend genau analytisch beschreibbar, muss ein adäquates Modell auf der Basis von Beobachtungen (Messdaten) abgeleitet werden. Erschwerend wirken sich hierbei starke Nichtlinearitäten sowie der zeitvariante Charakter der zu identifizierenden Systeme aus. Die Zeitvarianz, beispielsweise durch Alterung oder Verschleiß hervorgerufen, erfordert zusätzlich eine schritthaltende Adaption an den sich verändernden Prozess. Das einmalige, zeitlich begrenzte Erstellen eines Modells ist somit nicht ausreichend. Stattdessen muss zeitlich unbegrenzt "nachtrainiert" werden, was dementsprechend als "Kontinuierliches Lernen" bezeichnet wird. Auch wenn das Ableiten eines Systemmodells anhand von Beobachtungen eine typische Aufgabenstellung für Neuronale Netze ist, stellt die Zeitvarianz Neuronale Netze dennoch vor enorme Probleme. Im Rahmen der Dissertation wurden diese Probleme identifiziert und anhand von unterschiedlichen Neuronalen Netzansätzen analysiert. Auf den sich hieraus ergebenden Ergebnissen steht anschließend die Entwicklung eines neuartigen Neuronalen Netzansatzes im Mittelpunkt. Die besondere Eigenschaft des hybriden ICE-Lernverfahrens ist die Fähigkeit, eine zur Problemkomplexität adäquate Netztopologie selbstständig zu generieren und diese entsprechend des zeitvarianten Charakters der Zielfunktion dynamisch adaptieren zu können. Diese Eigenschaft begünstigt insbesondere schnelles Initiallernen. Darüber hinaus ist das ICE-Verfahren in der Lage, parallel zur Modellausgabe Vertrauenswürdigkeitsprognosen für die aktuelle Ausgabe zur Verfügung zu stellen. Den Abschluss der Arbeit bildet eine spezielle Form des ICE-Ansatzes, bei der durch asymmetrische Aktivierungsfunktionen Parallelen zur Fuzzy-Logik hergestellt werden. Dadurch wird es möglich, automatisch Regeln abzuleiten, welche das erlernte Modell beschreiben. Die "Black-Box", die Neuronale Netze in der Regel darstellen, wird dadurch transparenter. / One of the main requirements for an optimal industrial control system is the availability of a precise model of the process, e.g. for a steel rolling mill. If no model or no analytical description of such a process is available a sufficient model has to be derived from observations, i.e. system identification. While nonlinear function approximation is a well-known application for neural networks, the approximation of nonlinear functions that change over time poses many additional problems which have been in the focus of this research. The time-variance caused for example by aging or attrition requires a continuous adaptation to process changes throughout the life-time of the system, here referred to as continuous learning. Based on the analysis of different neural network approaches the novel incremental construction algorithm ICE for continuous learning tasks has been developed. One of the main advantages of the ICE-algorithm is that the number of RBF-neurons and the number of local models of the hybrid network have not to be determined in advance. This is an important feature for fast initial learning. The evolved network is automatically adapted to the time-variant target function. Another advantage of the ICE-algorithm is the ability to simultaneously learn the target function and a confidence value for the network output. Finally a special version of the ICE-algorithm with asymmetric receptive fields is introduced. Here similarities to fuzzy logic are intended. The goal is to automatically derive rules which describe the learned model of the unknown process. In general a neural network is a "black box". In contrast to that an ICE-network is more transparent.
22

Anwendung und Entwicklung Neuronaler Verfahren zur autonomen Prozess-Steuerung

Protzel, Peter, Lewandowski, Achim, Kindermann, Lars, Tagscherer, Michael, Herrnberger, Bärbel 09 October 2001 (has links)
In diesem Bericht wurden die Arbeiten und Ergebnisse dargestellt, die am FORWISS im Rahmen des Verbundprojekts AENEAS im Zeitraum vom 1.10.1995 bis zum 31.12.1999 erzielt wurden. Die Forschungsziele des Vorhabens wurden durch eine industrielle Anwendung im Bereich der Stahlverarbeitung motiviert und konzentrierten sich im Wesentlichen auf die folgenden Punkte: • Modellierung von nichtlinearen und zeitvarianten Prozessen, die analytisch nicht fassbar sind und nur durch Messdaten repräsentiert werden. • Modellierung von Größen, die nicht direkt messbar sind, aber auf nichtlineare Weise von anderen, messbaren Größen abhängen. • Kombination von analytischen bzw. statistischen Modellen und Neuronalen Netzen, um die jeweiligen Vorteile der Verfahren zu vereinen. Als Ergebnis des Vorhabens wurden eine Reihe neuer Ansätze zum kontinuierlichen Lernen entwickelt, darunter eine neuartige, lebenslang adaptive Netzarchitektur mit entscheidenden Vorteilen im Bereich des kontinuierlichen Lernens im Vergleich zu allen bisher bekannten Verfahren. Zum zweiten Punkt wurde eine Theorie der Analyse iterierter Prozesse entwickelt, die auf das mathematische Problem der Lösung von Funktionswurzeln führte. Für nichtlineare Systeme gibt es keine analytischen Lösungsmöglichkeiten, daher wurden erstmals Neuronale Netze zur Lösung dieses Problems verwendet. Die Ergebnisse aller grundlagenorientierten Arbeiten flossen in die Lösung eines industriellen Anwendungsproblems ein, bei der End- und Zwischenprofile warmgewalzter Stahlbänder modelliert und prognostiziert werden sollten. Dieser Prozess ist charakterisiert durch Nichtlinearität, Zeitvarianz („Tagesform“ der Anlage) und durch die nicht direkte Messbarkeit der Zwischenprofile, die sich als inverse Iteration (Funktionswurzel) aus dem Endprofil ergeben. Dieses Problem konnte auf elegante Weise durch eine Verknüpfung von analytischen und neuronalen Ansätzen gelöst werden. Neben dem unmittelbaren Wert der Ergebnisse bei der Lösung der beispielhaften Anwendung lassen sich die entwickelten Verfahren zum kontinuierlichen Lernen und zur Analyse iterierter Prozesse auf eine Vielzahl anderer Problemstellungen verallgemeinern und stellen eine gute Basis für weitere Forschungsarbeiten dar.
23

Cutting force component-based rock differentiation utilising machine learning

Grafe, Bruno 02 August 2023 (has links)
This dissertation evaluates the possibilities and limitations of rock type identification in rock cutting with conical picks. For this, machine learning in conjunction with features derived from high frequency cutting force measurements is used. On the basis of linear cutting experiments, it is shown that boundary layers can be identified with a precision of less than 3.7 cm when using the developed programme routine. It is further shown that rocks weakened by cracks can be well identified and that anisotropic rock behaviour may be problematic to the classification success. In a case study, it is shown that the supervised algorithms artificial neural network and distributed random forest perform relatively well while unsupervised k-means clustering provides limited accuracies for complex situations. The 3d-results are visualised in a web app. The results suggest that a possible rock classification system can achieve good results—that are robust to changes in the cutting parameters when using the proposed evaluation methods.:1 Introduction...1 2 Cutting Excavation with Conical Picks...5 2.1 Cutting Process...8 2.1.2 Cutting Parameters...11 2.1.3 Influences of Rock Mechanical Properties...17 2.1.4 Influences of the Rock Mass...23 2.2 Ratios of Cutting Force Components...24 3 State of the Art...29 3.1 Data Analysis in Rock Cutting Research...29 3.2 Rock Classification Systems...32 3.2.1 MWC – Measure-While-Cutting...32 3.2.2 MWD – Measuring-While-Drilling...34 3.2.3 Automated Profiling During Cutting...35 3.2.4 Wear Monitoring...36 3.3 Machine learning for Rock Classification...36 4 Problem Statement and Justification of Topic...38 5 Material and Methods...40 5.1 Rock Cutting Equipment...40 5.2 Software & PC...42 5.3 Samples and Rock Cutting Parameters...43 5.3.1 Sample Sites...43 5.3.2 Experiment CO – Zoned Concrete...45 5.3.3 Experiment GN – Anisotropic Rock Gneiss...47 5.3.4 Experiment GR – Uncracked and Cracked Granite...49 5.3.5 Case Study PB and FBA – Lead-Zinc and Fluorite-Barite Ores...50 5.4 Data Processing...53 5.5 Force Component Ratio Calculation...54 5.6 Procedural Selection of Features...57 5.7 Image-Based Referencing and Rock Boundary Modelling...60 5.8 Block Modelling and Gridding...61 5.9 Correlation Analysis...63 5.10 Regression Analysis of Effect...64 5.11 Machine Learning...65 5.11.2 K-Means Algorithm...66 5.11.3 Artificial Neural Networks...67 5.11.4 Distributed Random Forest...70 5.11.5 Classification Success...72 5.11.6 Boundary Layer Recognition Precision...73 5.12 Machine Learning Case Study...74 6 Results...75 6.1 CO – Zoned Concrete...75 6.1.1 Descriptive Statistics...75 6.1.2 Procedural Evaluation...76 6.1.3 Correlation of the Covariates...78 6.1.4 K-Means Cluster Analysis...79 6.2 GN – Foliated Gneiss...85 6.2.1 Cutting Forces...86 6.2.2 Regression Analysis of Effect...88 6.2.3 Details Irregular Behaviour...90 6.2.4 Interpretation of Anisotropic Behaviour...92 6.2.5 Force Component Ratios...92 6.2.6 Summary and Interpretations of Results...93 6.3 CR – Cracked Granite...94 6.3.1 Force Component Results...94 6.3.2 Spatial Analysis...97 6.3.3 Error Analysis...99 6.3.4 Summary...100 6.4 Case Study...100 6.4.1 Feature Distribution in Block Models...101 6.4.2 Distributed Random Forest...105 6.4.3 Artificial Neural Network...107 6.4.4 K-Means...110 6.4.5 Training Data Required...112 7 Discussion...114 7.1 Critical Discussion of Experimental Results...114 7.1.1 Experiment CO...114 7.1.2 Experiment GN...115 7.1.3 Experiment GR...116 7.1.4 Case Study...116 7.1.5 Additional Outcomes...117 7.2 Comparison of Machine Learning Algorithms...118 7.2.1 K-Means...118 7.2.2 Artificial Neural Networks and Distributed Random Forest...119 7.2.3 Summary...120 7.3 Considerations Towards Sensor System...121 7.3.1 Force Vectors and Data Acquisition Rate...121 7.3.2 Sensor Types...122 7.3.3 Computation Speed...123 8 Summary and Outlook...125 References...128 Annex A Fields of Application of Conical Tools...145 Annex B Supplements Cutting and Rock Parameters...149 Annex C Details Topic-Analysis Rock Cutting Publications...155 Annex D Details Patent Analysis...157 Annex E Details Rock Cutting Unit HSX-1000-50...161 Annex F Details Used Pick...162 Annex G Error Analysis Cutting Experiments...163 Annex H Details Photographic Modelling...166 Annex I Laser Offset...168 Annex J Supplements Experiment CO...169 Annex K Supplements Experiment GN...187 Annex L Supplements Experiment GR...191 Annex M Preliminary Artificial Neural Network Training...195 Annex N Supplements Case Study (CD)...201 Annex O R-Codes (CD)...203 Annex P Supplements Rock Mechanical Tests (CD)...204 / Die Dissertation evaluiert Möglichkeiten und Grenzen der Gebirgserkennung bei der schneidenden Gewinnung von Festgesteinen mit Rundschaftmeißeln unter Nutzung maschinellen Lernens – in Verbindung mit aus hochaufgelösten Schnittkraftmessungen abgeleiteten Kennwerten. Es wird auf linearen Schneidversuchen aufbauend gezeigt, dass Schichtgrenzen mit Genauigkeiten unter 3,7 cm identifiziert werden können. Ferner wird gezeigt, dass durch Risse geschwächte Gesteine gut identifiziert werden können und dass anisotropes Gesteinsverhalten möglicherweise problematisch auf den Klassifizierungserfolg wirkt. In einer Fallstudie wird gezeigt, dass die überwachten Algorithmen Künstliches Neurales Netz und Distributed Random Forest teils sehr gute Ergebnisse erzielen und unüberwachtes k-means-Clustering begrenzte Genauigkeiten für komplexe Situationen liefert. Die Ergebnisse werden in einer Web-App visualisiert. Aus den Ergebnissen wird abgeleitet, dass ein mögliches Sensorsystem mit den vorgeschlagenen Auswerteroutinen gute Ergebnisse erzielen kann, die gleichzeitig robust gegen Änderungen der Schneidparameter sind.:1 Introduction...1 2 Cutting Excavation with Conical Picks...5 2.1 Cutting Process...8 2.1.2 Cutting Parameters...11 2.1.3 Influences of Rock Mechanical Properties...17 2.1.4 Influences of the Rock Mass...23 2.2 Ratios of Cutting Force Components...24 3 State of the Art...29 3.1 Data Analysis in Rock Cutting Research...29 3.2 Rock Classification Systems...32 3.2.1 MWC – Measure-While-Cutting...32 3.2.2 MWD – Measuring-While-Drilling...34 3.2.3 Automated Profiling During Cutting...35 3.2.4 Wear Monitoring...36 3.3 Machine learning for Rock Classification...36 4 Problem Statement and Justification of Topic...38 5 Material and Methods...40 5.1 Rock Cutting Equipment...40 5.2 Software & PC...42 5.3 Samples and Rock Cutting Parameters...43 5.3.1 Sample Sites...43 5.3.2 Experiment CO – Zoned Concrete...45 5.3.3 Experiment GN – Anisotropic Rock Gneiss...47 5.3.4 Experiment GR – Uncracked and Cracked Granite...49 5.3.5 Case Study PB and FBA – Lead-Zinc and Fluorite-Barite Ores...50 5.4 Data Processing...53 5.5 Force Component Ratio Calculation...54 5.6 Procedural Selection of Features...57 5.7 Image-Based Referencing and Rock Boundary Modelling...60 5.8 Block Modelling and Gridding...61 5.9 Correlation Analysis...63 5.10 Regression Analysis of Effect...64 5.11 Machine Learning...65 5.11.2 K-Means Algorithm...66 5.11.3 Artificial Neural Networks...67 5.11.4 Distributed Random Forest...70 5.11.5 Classification Success...72 5.11.6 Boundary Layer Recognition Precision...73 5.12 Machine Learning Case Study...74 6 Results...75 6.1 CO – Zoned Concrete...75 6.1.1 Descriptive Statistics...75 6.1.2 Procedural Evaluation...76 6.1.3 Correlation of the Covariates...78 6.1.4 K-Means Cluster Analysis...79 6.2 GN – Foliated Gneiss...85 6.2.1 Cutting Forces...86 6.2.2 Regression Analysis of Effect...88 6.2.3 Details Irregular Behaviour...90 6.2.4 Interpretation of Anisotropic Behaviour...92 6.2.5 Force Component Ratios...92 6.2.6 Summary and Interpretations of Results...93 6.3 CR – Cracked Granite...94 6.3.1 Force Component Results...94 6.3.2 Spatial Analysis...97 6.3.3 Error Analysis...99 6.3.4 Summary...100 6.4 Case Study...100 6.4.1 Feature Distribution in Block Models...101 6.4.2 Distributed Random Forest...105 6.4.3 Artificial Neural Network...107 6.4.4 K-Means...110 6.4.5 Training Data Required...112 7 Discussion...114 7.1 Critical Discussion of Experimental Results...114 7.1.1 Experiment CO...114 7.1.2 Experiment GN...115 7.1.3 Experiment GR...116 7.1.4 Case Study...116 7.1.5 Additional Outcomes...117 7.2 Comparison of Machine Learning Algorithms...118 7.2.1 K-Means...118 7.2.2 Artificial Neural Networks and Distributed Random Forest...119 7.2.3 Summary...120 7.3 Considerations Towards Sensor System...121 7.3.1 Force Vectors and Data Acquisition Rate...121 7.3.2 Sensor Types...122 7.3.3 Computation Speed...123 8 Summary and Outlook...125 References...128 Annex A Fields of Application of Conical Tools...145 Annex B Supplements Cutting and Rock Parameters...149 Annex C Details Topic-Analysis Rock Cutting Publications...155 Annex D Details Patent Analysis...157 Annex E Details Rock Cutting Unit HSX-1000-50...161 Annex F Details Used Pick...162 Annex G Error Analysis Cutting Experiments...163 Annex H Details Photographic Modelling...166 Annex I Laser Offset...168 Annex J Supplements Experiment CO...169 Annex K Supplements Experiment GN...187 Annex L Supplements Experiment GR...191 Annex M Preliminary Artificial Neural Network Training...195 Annex N Supplements Case Study (CD)...201 Annex O R-Codes (CD)...203 Annex P Supplements Rock Mechanical Tests (CD)...204

Page generated in 0.0452 seconds