• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Time-varying infinite dimensional state-space systems /

Jacob, Birgit. January 1995 (has links) (PDF)
Univ., Diss.--Bremen, 1995.
2

Trajektorienfolgeregelung mittels linear-zeitvarianter Ausgangsrückführungen

Hopp, Christian January 2005 (has links)
Zugl.: Clausthal, Techn. Univ., Diss., 2005
3

Nonlinear state and parameter estimation of spatially distributed systems

Sawo, Felix January 2009 (has links)
Zugl.: Karlsruhe, Univ., Diss., 2009 / Hergestellt on demand
4

Anwendung und Entwicklung Neuronaler Verfahren zur autonomen Prozess-Steuerung

Protzel, Peter, Lewandowski, Achim, Kindermann, Lars, Tagscherer, Michael, Herrnberger, Bärbel 09 October 2001 (has links) (PDF)
In diesem Bericht wurden die Arbeiten und Ergebnisse dargestellt, die am FORWISS im Rahmen des Verbundprojekts AENEAS im Zeitraum vom 1.10.1995 bis zum 31.12.1999 erzielt wurden. Die Forschungsziele des Vorhabens wurden durch eine industrielle Anwendung im Bereich der Stahlverarbeitung motiviert und konzentrierten sich im Wesentlichen auf die folgenden Punkte: • Modellierung von nichtlinearen und zeitvarianten Prozessen, die analytisch nicht fassbar sind und nur durch Messdaten repräsentiert werden. • Modellierung von Größen, die nicht direkt messbar sind, aber auf nichtlineare Weise von anderen, messbaren Größen abhängen. • Kombination von analytischen bzw. statistischen Modellen und Neuronalen Netzen, um die jeweiligen Vorteile der Verfahren zu vereinen. Als Ergebnis des Vorhabens wurden eine Reihe neuer Ansätze zum kontinuierlichen Lernen entwickelt, darunter eine neuartige, lebenslang adaptive Netzarchitektur mit entscheidenden Vorteilen im Bereich des kontinuierlichen Lernens im Vergleich zu allen bisher bekannten Verfahren. Zum zweiten Punkt wurde eine Theorie der Analyse iterierter Prozesse entwickelt, die auf das mathematische Problem der Lösung von Funktionswurzeln führte. Für nichtlineare Systeme gibt es keine analytischen Lösungsmöglichkeiten, daher wurden erstmals Neuronale Netze zur Lösung dieses Problems verwendet. Die Ergebnisse aller grundlagenorientierten Arbeiten flossen in die Lösung eines industriellen Anwendungsproblems ein, bei der End- und Zwischenprofile warmgewalzter Stahlbänder modelliert und prognostiziert werden sollten. Dieser Prozess ist charakterisiert durch Nichtlinearität, Zeitvarianz („Tagesform“ der Anlage) und durch die nicht direkte Messbarkeit der Zwischenprofile, die sich als inverse Iteration (Funktionswurzel) aus dem Endprofil ergeben. Dieses Problem konnte auf elegante Weise durch eine Verknüpfung von analytischen und neuronalen Ansätzen gelöst werden. Neben dem unmittelbaren Wert der Ergebnisse bei der Lösung der beispielhaften Anwendung lassen sich die entwickelten Verfahren zum kontinuierlichen Lernen und zur Analyse iterierter Prozesse auf eine Vielzahl anderer Problemstellungen verallgemeinern und stellen eine gute Basis für weitere Forschungsarbeiten dar.
5

Anwendung und Entwicklung Neuronaler Verfahren zur autonomen Prozess-Steuerung

Protzel, Peter, Lewandowski, Achim, Kindermann, Lars, Tagscherer, Michael, Herrnberger, Bärbel 09 October 2001 (has links)
In diesem Bericht wurden die Arbeiten und Ergebnisse dargestellt, die am FORWISS im Rahmen des Verbundprojekts AENEAS im Zeitraum vom 1.10.1995 bis zum 31.12.1999 erzielt wurden. Die Forschungsziele des Vorhabens wurden durch eine industrielle Anwendung im Bereich der Stahlverarbeitung motiviert und konzentrierten sich im Wesentlichen auf die folgenden Punkte: • Modellierung von nichtlinearen und zeitvarianten Prozessen, die analytisch nicht fassbar sind und nur durch Messdaten repräsentiert werden. • Modellierung von Größen, die nicht direkt messbar sind, aber auf nichtlineare Weise von anderen, messbaren Größen abhängen. • Kombination von analytischen bzw. statistischen Modellen und Neuronalen Netzen, um die jeweiligen Vorteile der Verfahren zu vereinen. Als Ergebnis des Vorhabens wurden eine Reihe neuer Ansätze zum kontinuierlichen Lernen entwickelt, darunter eine neuartige, lebenslang adaptive Netzarchitektur mit entscheidenden Vorteilen im Bereich des kontinuierlichen Lernens im Vergleich zu allen bisher bekannten Verfahren. Zum zweiten Punkt wurde eine Theorie der Analyse iterierter Prozesse entwickelt, die auf das mathematische Problem der Lösung von Funktionswurzeln führte. Für nichtlineare Systeme gibt es keine analytischen Lösungsmöglichkeiten, daher wurden erstmals Neuronale Netze zur Lösung dieses Problems verwendet. Die Ergebnisse aller grundlagenorientierten Arbeiten flossen in die Lösung eines industriellen Anwendungsproblems ein, bei der End- und Zwischenprofile warmgewalzter Stahlbänder modelliert und prognostiziert werden sollten. Dieser Prozess ist charakterisiert durch Nichtlinearität, Zeitvarianz („Tagesform“ der Anlage) und durch die nicht direkte Messbarkeit der Zwischenprofile, die sich als inverse Iteration (Funktionswurzel) aus dem Endprofil ergeben. Dieses Problem konnte auf elegante Weise durch eine Verknüpfung von analytischen und neuronalen Ansätzen gelöst werden. Neben dem unmittelbaren Wert der Ergebnisse bei der Lösung der beispielhaften Anwendung lassen sich die entwickelten Verfahren zum kontinuierlichen Lernen und zur Analyse iterierter Prozesse auf eine Vielzahl anderer Problemstellungen verallgemeinern und stellen eine gute Basis für weitere Forschungsarbeiten dar.
6

Nonlinear Dynamics and Chaos in Systems with Time-Varying Delay

Müller-Bender, David 30 October 2020 (has links)
Systeme mit Zeitverzögerung sind dadurch charakterisiert, dass deren zukünftige Entwicklung durch den Zustand zum aktuellen Zeitpunkt nicht eindeutig festgelegt ist. Die Historie des Zustands muss in einem Zeitraum bekannt sein, dessen Länge Totzeit genannt wird und die Gedächtnislänge festlegt. In dieser Arbeit werden fundamentale Effekte untersucht, die sich ergeben, wenn die Totzeit zeitlich variiert wird. Im ersten Teil werden zwei Klassen periodischer Totzeitvariationen eingeführt. Da diese von den dynamischen Eigenschaften einer eindimensionalen iterierten Abbildung abgeleitet werden, die über die Totzeit definiert wird, werden die Klassen entsprechend der zugehörigen Dynamik konservativ oder dissipativ genannt. Systeme mit konservativer Totzeit können in Systeme mit konstanter Totzeit transformiert werden und besitzen gleiche charakteristische Eigenschaften. Dagegen weisen Systeme mit dissipativer Totzeit fundamentale Unterschiede z.B. in der Tangentialraumdynamik auf. Im zweiten Teil werden diese Ergebnisse auf Systeme angewendet, deren Totzeit im Vergleich zur internen Relaxationszeit des Systems groß ist. Es zeigt sich, dass ein durch dissipative Totzeitvariationen induzierter Mechanismus, genannt resonanter Dopplereffekt, unter anderem zu neuen Arten chaotischer Dynamik führt. Diese sind im Vergleich zur bekannten chaotischen Dynamik in Systemen mit konstanter Totzeit sehr niedrig-dimensional. Als Spezialfall wird das so genannte laminare Chaos betrachtet, dessen Zeitreihen durch nahezu konstante Phasen periodischer Dauer gekennzeichnet sind, deren Amplitude chaotisch variiert. Im dritten Teil dieser Arbeit wird auf der Basis experimenteller Daten und durch die Analyse einer nichtlinearen retardierten Langevin-Gleichung gezeigt, dass laminares Chaos robust gegenüber Störungen wie zum Beispiel Rauschen ist und experimentell realisiert werden kann. Es werden Methoden zur Zeitreihenanalyse entwickelt, um laminares Chaos in experimentellen Daten ohne Kenntnis des erzeugenden Systems zu detektieren. Mit diesen Methoden ist selbst dann eine Detektion möglich, wenn das Rauschen so stark ist, dass laminares Chaos mit bloßem Auge nur schwer erkennbar ist.:1. Introduction 2. Dissipative and conservative delays in systems with time-varying delay 3. Laminar Chaos and the resonant Doppler effect 4. Laminar Chaos: a robust phenomenon 5. Summary and concluding remarks A. Appendix / In systems with time-delay, the evolution of a system is not uniquely determined by the state at the current time. The history of the state must be known for a time period of finite duration, where the duration is called delay and determines the memory length of the system. In this work, fundamental effects arising from a temporal variation of the time-delay are investigated. In the first part, two classes of periodically time-varying delays are introduced. They are related to a specific dynamics of a one-dimensional iterated map that is defined by the time-varying delay. Referring to the related map dynamics the classes are called conservative or dissipative. Systems with conservative delay can be transformed into systems with constant delay, and thus have the same characteristic properties as constant delay systems. In contrast, there are fundamental differences, for instance, in the tangent space dynamics, between systems with dissipative delay and systems with constant delay. In the second part, these results are applied to systems with a delay that is considered large compared to the internal relaxation time of the system. It is shown that a mechanism induced by dissipative delays leads to new kinds of regular and chaotic dynamics. The dynamics caused by the so-called resonant Doppler effect is fundamentally different from the behavior known from systems with constant delay. For instance, the chaotic attractors in systems with dissipative delay are very low-dimensional compared to typical ones arising in systems with constant delay. An example of this new kind of low-dimensional dynamics is given by the so-called Laminar Chaos. It is characterized by nearly constant laminar phases of periodic duration, where the amplitude varies chaotically. In the third part of this work, it is shown that Laminar Chaos is a robust phenomenon, which survives perturbations such as noise and can be observed experimentally. Therefore experimental data is provided and a nonlinear delayed Langevin equation is analyzed. Using the robust features that characterize Laminar Chaos, methods for time series analysis are developed, which enable us to detect Laminar Chaos without the knowledge of the specific system that has generated the time series. By these methods Laminar Chaos can be detected even for comparably large noise strengths, where the characteristic properties are nearly invisible to the eye.:1. Introduction 2. Dissipative and conservative delays in systems with time-varying delay 3. Laminar Chaos and the resonant Doppler effect 4. Laminar Chaos: a robust phenomenon 5. Summary and concluding remarks A. Appendix

Page generated in 0.0612 seconds