Spelling suggestions: "subject:"ees réseaux dde neurones"" "subject:"ees réseaux dee neurones""
1 |
Calibrated uncertainty estimation for SLAMBansal, Dishank 04 1900 (has links)
La focus de cette thèse de maîtrise est l’analyse de l’étalonnage de l’incertitude pour la lo- calisation et la cartographie simultanées (SLAM) en utilisant des modèles de mesure basés sur les réseaux de neurones. SLAM sont un problème fondamental en robotique et en vision par ordinateur, avec de nombreuses applications allant des voitures autonomes aux réalités augmentées. Au cœur de SLAM, il s’agit d’estimer la pose (c’est-à-dire la position et l’orien- tation) d’un robot ou d’une caméra lorsqu’elle se déplace dans un environnement inconnu et de construire simultanément une carte de l’environnement environnant. Le SLAM visuel, qui utilise des images en entrée, est un cadre de SLAM couramment utilisé. Cependant, les méthodes traditionnelles de SLAM visuel sont basées sur des caractéristiques fabriquées à la main et peuvent être vulnérables à des défis tels que la mauvaise luminosité et l’occultation. L’apprentissage profond est devenu une approche plus évolutive et robuste, avec les réseaux de neurones convolutionnels (CNN) devenant le système de perception de facto en robotique.
Pour intégrer les méthodes basées sur les CNN aux systèmes de SLAM, il est nécessaire d’estimer l’incertitude ou le bruit dans les mesures de perception. L’apprentissage profond bayésien a fourni diverses méthodes pour estimer l’incertitude dans les réseaux de neurones, notamment les ensembles, la distribution sur les paramètres du réseau et l’ajout de têtes de prédiction pour les paramètres de distribution de la sortie. Cependant, il est également important de s’assurer que ces estimations d’incertitude sont bien étalonnées, c’est-à-dire qu’elles reflètent fidèlement l’erreur de prédiction.
Dans cette thèse de maîtrise, nous abordons ce défi en développant un système de SLAM qui intègre un réseau de neurones en tant que modèle de mesure et des estimations d’in- certitude étalonnées. Nous montrons que ce système fonctionne mieux que les approches qui utilisent la méthode traditionnelle d’estimation de l’incertitude, où les estimations de l’incertitude sont simplement considérées comme des hyperparamètres qui sont réglés ma- nuellement. Nos résultats démontrent l’importance de tenir compte de manière précise de l’incertitude dans le problème de SLAM, en particulier lors de l’utilisation d’un réseau de neur. / The focus of this Masters thesis is the analysis of uncertainty calibration for Simultaneous Localization and Mapping (SLAM) using neural network-based measurement models. SLAM is a fundamental problem in robotics and computer vision, with numerous applications rang- ing from self-driving cars to augmented reality. At its core, SLAM involves estimating the pose (i.e., position and orientation) of a robot or camera as it moves through an unknown environment and constructing a map of the surrounding environment simultaneously. Vi- sual SLAM, which uses images as input, is a commonly used SLAM framework. However, traditional Visual SLAM methods rely on handcrafted features and can be vulnerable to challenges such as poor lighting and occlusion. Deep learning has emerged as a more scal- able and robust approach, with Convolutional Neural Networks (CNNs) becoming the de facto perception system in robotics.
To integrate CNN-based methods with SLAM systems, it is necessary to estimate the uncertainty or noise in the perception measurements. Bayesian deep learning has provided various methods for estimating uncertainty in neural networks, including ensembles, distribu- tions over network parameters, and adding variance heads for direct uncertainty prediction. However, it is also essential to ensure that these uncertainty estimates are well-calibrated, i.e they accurately reflect the error in the prediction.
In this Master’s thesis, we address this challenge by developing a system for SLAM that incorporates a neural network as the measurement model and calibrated uncertainty esti- mates. We show that this system performs better than the approaches which uses traditional uncertainty estimation method, where uncertainty estimates are just considered hyperpa- rameters which are tuned manually. Our results demonstrate the importance of accurately accounting for uncertainty in the SLAM problem, particularly when using a neural network as the measurement model, in order to achieve reliable and robust localization and mapping.
|
2 |
Traitement automatique de la parole en milieu bruité : étude de modèles connexionnistes statiques et dynamiquesBuniet, Laurent 10 February 1997 (has links) (PDF)
Les recherches effectuées dans le domaine de la reconnaissance automatique de la parole (RAP) permettent d'envisager un éventail toujours plus large d'applications industrielles ou grand public. Cependant, la compréhension des mécanismes de production et de reconnaissance de la parole par l'Homme ne suffit pas en elle-même pour élaborer effectivement les dites applications. Les conditions de laboratoire qui ont prévalues lors de l'enregistrement des premiers corpus de parole utilisés à des fins de recherches sont en effet très différentes des conditions réelles que l'on rencontre généralement dans les lieux de travail ou de vie. Ayant le plus souvent été enregistrés en chambre anéchoïde, ces corpus ne permettaient pas plus d'appréhender les dégradations que le milieu peut engendrer sur le signal de parole que de constater quelles pouvaient être les modifications provoquées sur ce signal par un locuteur essayant de s'adapter à son milieu. Certaines des recherches actuelles en RAP essaient donc d'améliorer les capacités de résistance au bruit des systèmes existants. Pour ce faire, il est possible d'utiliser un système d'abord défini pour la reconnaissance de la parole non bruitée en lui ajoutant un mécanisme lui permettant de s'adapter à certaines conditions de bruit. Il est également possible de définir un système ab-nihilo qui soit tout aussi bien adapté aux conditions non bruitées qu'aux conditions bruitées. Le sujet de cette thèse porte sur la reconnaissance de petits vocabulaires, tels que les lettres ou les chiffres, prononcés de manière continue en milieu bruité. Pour mener à bien cette étude, différentes architectures connexionnistes ont été étudiées. L'utilisation de modèles connexionnistes nous a permis de mettre au point, grâce au mécanisme d'apprentissage, des systèmes qui sont immédiatement adaptés à différentes conditions de bruit. Un premier système a été mis en place qui permet, en trois étapes, de reconnaître les mots du vocabulaire étudié. Une première étape identifie des points d'ancrage dans le signal, ces points d'ancrage correspondant à une segmentation des parties vocaliques du signal. Une deuxième étape permet de reconnaître les voyelles contenues dans les segments retenus alors qu'une troisième étape permet de distinguer les différents mots du vocabulaire qui possèdent les mêmes voyelles. Cette architecture, basée sur des perceptrons multicouches, a prouvé être de bonne qualité mais l'étape de segmentation s'est révélée être de moindre qualité à des rapports signal sur bruit faible c'est à dire de l'ordre de 6 décibels ou moins. Ceci nous a poussé à étudier des modèles connexionnistes dynamiques, à l'opposé des perceptrons multicouches qui sont des modèles statiques. Les modèles dynamiques ont la particularité de mettre en place des mécanismes de récurrence qui permettent de mieux appréhender les phénomènes temporels tel que peut l'être un problème de segmentation de la parole. Le modèle gamma, un modèle connexionniste à récurrence locale, a ainsi été choisi tout autant pour ses capacités à modéliser les évènements temporels que pour la facilité avec laquelle il peut être analysé. Il a été appliqué à des problèmes de reconnaissance de séquences, ce qui a permis d'explorer ses capacités, ainsi qu'à des tâches de segmentation, pour tenter de résoudre les problèmes posés par les perceptrons multicouches lors de l'utilisation de notre premier système.
|
3 |
Deep reinforcement learning for multi-modal embodied navigationWeiss, Martin 12 1900 (has links)
Ce travail se concentre sur une tâche de micro-navigation en plein air où le but est de naviguer
vers une adresse de rue spécifiée en utilisant plusieurs modalités (par exemple, images, texte
de scène et GPS). La tâche de micro-navigation extérieure s’avère etre un défi important pour
de nombreuses personnes malvoyantes, ce que nous démontrons à travers des entretiens et
des études de marché, et nous limitons notre définition des problèmes à leurs besoins. Nous
expérimentons d’abord avec un monde en grille partiellement observable (Grid-Street et Grid
City) contenant des maisons, des numéros de rue et des régions navigables. Ensuite, nous
introduisons le Environnement de Trottoir pour la Navigation Visuelle (ETNV), qui contient
des images panoramiques avec des boîtes englobantes pour les numéros de maison, les portes
et les panneaux de nom de rue, et des formulations pour plusieurs tâches de navigation. Dans
SEVN, nous formons un modèle de politique pour fusionner des observations multimodales
sous la forme d’images à résolution variable, de texte visible et de données GPS simulées afin
de naviguer vers une porte d’objectif. Nous entraînons ce modèle en utilisant l’algorithme
d’apprentissage par renforcement, Proximal Policy Optimization (PPO). Nous espérons que
cette thèse fournira une base pour d’autres recherches sur la création d’agents pouvant aider
les membres de la communauté des gens malvoyantes à naviguer le monde. / This work focuses on an Outdoor Micro-Navigation (OMN) task in which the goal is to
navigate to a specified street address using multiple modalities including images, scene-text,
and GPS. This task is a significant challenge to many Blind and Visually Impaired (BVI)
people, which we demonstrate through interviews and market research. To investigate the
feasibility of solving this task with Deep Reinforcement Learning (DRL), we first introduce
two partially observable grid-worlds, Grid-Street and Grid City, containing houses, street
numbers, and navigable regions. In these environments, we train an agent to find specific
houses using local observations under a variety of training procedures. We parameterize
our agent with a neural network and train using reinforcement learning methods. Next, we
introduce the Sidewalk Environment for Visual Navigation (SEVN), which contains panoramic
images with labels for house numbers, doors, and street name signs, and formulations for
several navigation tasks. In SEVN, we train another neural network model using Proximal
Policy Optimization (PPO) to fuse multi-modal observations in the form of variable resolution
images, visible text, and simulated GPS data, and to use this representation to navigate to
goal doors. Our best model used all available modalities and was able to navigate to over 100
goals with an 85% success rate. We found that models with access to only a subset of these
modalities performed significantly worse, supporting the need for a multi-modal approach to
the OMN task. We hope that this thesis provides a foundation for further research into the
creation of agents to assist members of the BVI community to safely navigate.
|
Page generated in 0.0786 seconds