• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Produção heteróloga de ácido hialurônico em Klyuveromyces lactis

Gomes, Antonio Milton Vieira January 2016 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Programa de Pós-Graduação em Biologia Molecular, 2016. / Submitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2017-04-17T18:40:01Z No. of bitstreams: 1 2016_AntônioMiltonVieiraGomes.pdf: 3388910 bytes, checksum: 28c2639e6dd6374b37ddf0a5c1550cc5 (MD5) / Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2017-04-17T21:45:47Z (GMT) No. of bitstreams: 1 2016_AntônioMiltonVieiraGomes.pdf: 3388910 bytes, checksum: 28c2639e6dd6374b37ddf0a5c1550cc5 (MD5) / Made available in DSpace on 2017-04-17T21:45:47Z (GMT). No. of bitstreams: 1 2016_AntônioMiltonVieiraGomes.pdf: 3388910 bytes, checksum: 28c2639e6dd6374b37ddf0a5c1550cc5 (MD5) / O ácido hialurônico (AH) é um biopolímero composto de repetições alternadas dos monossacarídeos Ácido Glucurônico e N-Acetil glucosamina, sendo presente em todos os vertebrados e em humanos principalmente na pele. O AH possui aspecto viscoso, ajuda no rejuvenescimento da pele quando aplicado em humanos e é uma molécula considerada segura na utilização em animais em geral, por estes motivos o AH é muito utilizado na indústria farmacêutica e médica. Atualmente o AH é produzido por bactérias, que em diferentes níveis, são patogênicas aos animais, o que dificulta o escalonamento desta tecnologia e eleva os custos de purificação o que torna o AH uma molécula de alto custo financeiro. Leveduras não são capazes de sintetizar AH, mas são fábricas perfeitas para a sua produção, uma vez que são consideradas seguras, mais adaptadas às condições industriais quando comparado a bactérias e possuem parcialmente a via da síntese do ácido AH, sendo capazes de sintetizar um de seus precursores, o açúcar N-Acetil Glucosamina. As enzimas HAS (Hyaluronic Acid Synthases) que sintetizam AH são proteínas que se acoplam à membrana das células formando novas cadeias de AH pela junção dos dois açúcares precursores. Todos os vertebrados possuem HAS semelhantes e classificadas como Classe I, enquanto que a bactéria patogênica Pasteurella multocida, possui uma HAS diferente classificada como classe II. A fim de observar o possível impacto na síntese de AH devido às diferenças entre HAS de classe I de classe II, estes foram inseridos na levedura Klyveromyces lactis concomitante com o gene hasB (UDP-Glicose Desidrogenase). Com o auxílio de um estudo que testou a eficiência de transformação de K. lactis por metodologias de choque térmico e de eletroporação, foram construídas 4 cepas recombinantes de K. lactis contendo as diferentes formas de HAS de modo a aumentar a produção de AH pela levedura. Após a construção das cepas recombinantes, um meio otimizado baseado nas necessidades de co-fatores e metabólitos principais utilizados na via de síntese de AH foi desenvolvido e utilizado nas cinéticas de crescimento de K. lactis. Também testada, a influência das fontes de carbono glicose, sacarose, lactose e galactose foram visualizadas durante o crescimento nas cepas produtoras de AH, uma vez que diferentes fontes de carbono afetam de maneira diferente a glicólise e consequentemente o metabolismo de AH na célula. Lactose e sacarose aumentaram a produção de AH nas células em relação a galactose e glicose devido a um abastecimento mútuo da via de síntese dos dois precursores do AH. Utilizando lactose como fonte de carbono, foi alcançada uma melhor produção de 0,39 g/L de AH, valor competitivo com os alcançados por outra única levedura produtora de AH, o que prova pela primeira vez que K. lactis é uma potencial candidata para otimização da produção deste biopolímero. / Hyaluronic acid (HA) is a biopolymer composed of alternating repeats of monosaccharides Glucuronic Acid and N-Acetyl glucosamine, being present in all vertebrates and humans mainly in the skin. The HA has a viscous appearance, is used in skin rejuvenation when applied in humans and is a safe molecule for application in animals in general, for these reasons HA is widely used in the pharmaceutical and medical industry. Currently, HA is produced by bacteria pathogenic to humans, and are difficult to scale due to technology and purification costs. Yeasts are perfect factories for HA production, since they are considered safe, more adapted to industrial conditions when compared to bacteria and have partially complete the synthesis route of HA, being able to synthesize one precursor, the UDP-N-Acetyl Glucosamine. HA is produced by HAS (Hyaluronic Acid Synthase) enzymes. HAS enzymes have transmembrane domains that couple to the membrane of the cells forming new chains of HA by the junction of the two precursor sugars located in the cytoplasm. All vertebrates have HAS classified as Class I, whereas the pathogenic bacterium Pasteurella multocida have a different HAS (pmHAS) classified as Class II. To observe the impact on HA synthesis due to the differences between Class I and Class II HAS, in this study the hasA genes were inserted into yeast Klyveromyces lactis concomitant with the hasB gene (UDP-Glucose Dehydrogenase). A total of 4 recombinant strains of K. lactis containing different isoforms of HAS were constructed to increase a production of HA by yeast. After the construction of the recombinant strains, an optimized medium to auxiliary the needs of cofactors and metabolites was used in the synthesis pathway of HA for the development and use of K. lactis in fermentations. Also tested, the influence of the sources of carbon glucose, sucrose, lactose and galactose were visualized in fermentation in the HA producing strains, since different carbon sources affect glycolysis differently and consequently the metabolism of HA in the cell. Lactose and sucrose increased HA production in cells relative to galactose and glucose due to a mutual supply of the synthesis pathway of the two HA precursors. Using lactose as a carbon source, it obtained a better yield of 0.39 g / L of HA, a competitive value with the finished results of another single HA -producing yeast, which proves for the first time that K. lactis is a potential candidate for optimization of the production of this biopolymer.
2

Estratégias para integração múltipla de cassetes de expressão no genoma de Komagataella phaffii

Ocampo Betancur, Maritza 06 July 2017 (has links)
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Pós-Graduação em Biologia Molecular, 2017. / Submitted by Raquel Almeida (raquel.df13@gmail.com) on 2017-08-03T19:51:12Z No. of bitstreams: 1 2017_MartizaOcampoBetancur.pdf: 8305814 bytes, checksum: 5836c0b5d49fa976faaa55a8e11cd642 (MD5) / Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2017-09-15T14:49:52Z (GMT) No. of bitstreams: 1 2017_MartizaOcampoBetancur.pdf: 8305814 bytes, checksum: 5836c0b5d49fa976faaa55a8e11cd642 (MD5) / Made available in DSpace on 2017-09-15T14:49:52Z (GMT). No. of bitstreams: 1 2017_MartizaOcampoBetancur.pdf: 8305814 bytes, checksum: 5836c0b5d49fa976faaa55a8e11cd642 (MD5) Previous issue date: 2017-09-15 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / O aumento do número de cópias do gene heterólogo é uma das abordagens empregadas no melhoramento genético de Komagataella phaffii como sistema de expressão. O uso de marcas auxotróficas defectivas é uma estratégia para a obtenção de integrantes multicópia. Para garantir estabilidade mitótica, os cassetes de expressão são integrados no genoma por recombinação homóloga, portanto é necessário haver no vetor sequências genômicas que propiciem esses eventos de integração. O foco deste trabalho foi identificar sítios repetitivos no genoma de K. phaffii nunca antes testados como alvos de integração, em combinação com o uso da marca defectiva leu2-d, para aumentar a expressão heteróloga. Como alvos para integração múltipla foram avaliados os seguintes loci: rDNA 5S, região NTS do rDNA e regiões repetidas dos cromossomos 2 e 3. Um vetor contendo a marca leu2-d e o gene repórter EGFP (Enhanced Green FluorescentProtein) foi construído e foi usado como plataforma para clonar as diversas sequências repetidas. Todas as construções foram utilizadas para transformar K. phaffii M12 (leu2). A determinação do número de cópias integradas do cassete de expressão confirmou a obtenção de clones multicópia com todas as construções. Até 78 cópias do cassete contendo a sequência repetitiva do cromossomo 2 foram integradas. Todos os clones multicópiaapresentaram uma maior produção intracelular de GFP em comparação a um clone contendo uma única cópia do gene, chegando a se obter um aumento de 197 vezes com o clone contendo 78 cópias integradas do cassete. Para validar a estratégia apresentada neste estudo, foi testada a produção extracelular da proteína repórter α-amilase. Clones multicópia foram obtidos com as diferentes construções e até 43 cópias do cassete contendo a sequência repetitiva do cromossomo 2 foram integradas. A atividade amilolítica no sobrenadante confirmou a produção de amilase, que foi maior para os clones multicópia em comparação a um clone contendo uma cópia do gene, chegando a se obter um aumento de 4,6 vezes com o clone contendo 43 cópias integradas do cassete. A produção das duas proteínas avaliadas, demonstrou a possibilidade de obter clones multicópia que produzem uma maior quantidade da proteína recombinante. Contudo, foi observada perda de algumas cópias do cassete quando os clones transformantes foram crescidos em meio complexo, indicando baixa estabilidade genética na falta de pressão seletiva. Além disso, dependendo do local de integração, um alto número de cópias mostrou ter um efeito negativo no crescimento da levedura, porém, em nenhum dos casos a produção da proteína heteróloga diminuiu. / Increasing heterologous gene copy number is one of most commonly used strategies to improve Komagataellaphaffii as an expression system. The use of defective auxotrophic markers is an approach to obtain multicopy integrants. Expression cassettes must be integrated into the K. phaffii genome by homologous recombination to ensure mitotic stability. Therefore, it is necessary that the vector carries genomic sequences that will promote integration events. The aim of this work was to identify different sites for the integration of vectors carrying the auxotrophic defective marker leu2-d into the genome in order to increase the expression levels of heterologous genes in K. phaffii. The targets for integration studied were the following loci: 5S rDNA, NTS rDNA and repetitive regions of chromosomes 2 and 3. A vector carrying defective marker leu2-d and the EGFP(Enhanced Green Fluorescent Protein) reporter gene was constructed. This vector was used as platform to test repetitive sequences as targets for DNA integration. All constructions were used to transform K. phaffii M12 (leu2). Copy number determination confirmed the generation of multicopy clones with all the constructions. Up to 78 copies of the cassette containing the sequence of chromosome 2 were integrated. All multicopy clones showed more intracellular GFP production compared with a single-copy clone. A 197- fold increase of protein production was observed with the clone containing 78 copies of the cassette. To validate the strategy presented in this study, the expression of the reporter protein α- amylase was evaluated. Multicopy clones were obtained with the diverse constructions. Up to 43 copies of the cassette containing the sequence of chromosome 2 were integrated. Amylolytic activity in culture supernatants confirmed amylase production, which was higher for multicopy clones in comparison with a single-copy clone. A 4.6-fold increase of protein production was observed with the clone containing 43 copies of the cassette. Production of the two proteins tested showed the possibility to obtain multicopy clones which produce a larger quantity of the recombinant protein. Nevertheless, loss of some copies of the expression cassette was observed when transformants were grown in complex medium. This indicated low genetic stability in the absence of selective pressure. Moreover, depending of the integration locus higher copy number showed a negative effect in yeast growth. However, heterologous protein production was not decreased.
3

Modificações genéticas em linhagem industrial de Saccharomyces cerevisiae para a fermentação de xilose

Reis, Viviane Castelo Branco 31 January 2012 (has links)
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, 2012. / Submitted by Tania Milca Carvalho Malheiros (tania@bce.unb.br) on 2013-04-30T13:31:01Z No. of bitstreams: 1 2012_VivianeCasteloBrancoReis_Parcial.pdf: 23950574 bytes, checksum: ada26d8276116b5222dad832b831254c (MD5) / Rejected by Guimaraes Jacqueline(jacqueline.guimaraes@bce.unb.br), reason: on 2013-05-10T13:18:44Z (GMT) / Submitted by Tania Milca Carvalho Malheiros (tania@bce.unb.br) on 2013-05-10T13:32:25Z No. of bitstreams: 1 2012_VivianeCasteloBrancoReis_Parcial.pdf: 23952407 bytes, checksum: 83c151a080c3915cba63eff313a6648b (MD5) / Approved for entry into archive by Guimaraes Jacqueline(jacqueline.guimaraes@bce.unb.br) on 2013-05-16T14:30:25Z (GMT) No. of bitstreams: 1 2012_VivianeCasteloBrancoReis_Parcial.pdf: 23952407 bytes, checksum: 83c151a080c3915cba63eff313a6648b (MD5) / Made available in DSpace on 2013-05-16T14:30:25Z (GMT). No. of bitstreams: 1 2012_VivianeCasteloBrancoReis_Parcial.pdf: 23952407 bytes, checksum: 83c151a080c3915cba63eff313a6648b (MD5) / Para a produção economicamente viável de etanol de segunda geração a partir de bagaço de cana são necessários vários avanços tecnológicos em diferentes etapas deste bioprocesso incluindo o melhoramento genético de microrganismos fermentadores. A levedura Saccharomyces cerevisiae é o microrganismo mais usado para tal por ser uma excelente fermentadora e tolerante aos estresses dos grandes processos fermentativos industriais. Dentre os principais açúcares que compõem o bagaço de cana, destaca-se a xilose, uma pentose que pertence à fração hemicelulósica. Todavia, S. cerevisiae só utiliza hexoses na fermentação, não sendo capaz de metabolizar pentoses. O objetivo principal deste trabalho foi desenvolver uma levedura capaz de fermentar xilose. Inicialmente, foi feito um estudo das características genéticas da linhagem industrial de S. cerevisiae JP1 – microrganismo hospedeiro selecionado como alvo das modificações desejadas (Capítulo 1). Pode-se verificar que a linhagem JP1 é diploide e heterotálica. Mostrou-se também sensível às principais drogas usadas em processo de seleção de recombinantes assim com uma boa eficiência de transformação. Além disso, foi construída uma linhagem auxotrófica para uracila com a dupla deleção do gene URA3. Posteriormente, a linhagem JP1 foi modificada geneticamente para se tornar capaz de fermentar xilose a etanol (Capítulo 2). Foram construídos cassetes de expressão para duas enzimas da via metabólica de xilose - xilose isomerase e xiluloquinase – clonados em vetor epissomal. A linhagem recombinante obtida foi submetida à adaptação metabólica por 48 dias em meio contendo apenas xilose como fonte de carbono, levando a um aumento na taxa de crescimento de 0,008 h-1para 0,13 h-1. Estudos preliminares de fermentação em meio sintético mostrou um acúmulo de xilitol (YX/S = 0,29 g g-1) e baixa produção de etanol (YE/S = 0,27 g g-1). Para incrementar a produção de etanol, um cassete de deleção para o gene GRE3 (aldose redutase) foi desenvolvido. Além disso, consideramos a introdução de um gene codificador para um transportador com afinidade por xilose, visando aumentar o influxo de xilose para a célula. Para tanto, foi iniciada uma análise transcricional da levedura Pichia stipitis (Scheffersomyces stipitis) CBS 5774 adaptada ao hidrolisado de bagaço de cana a fim de compreender a regulação em diferentes concentraçõesde xilose e glicose, além de selecionar um possível transportador de xilose para ser expresso em S. cerevisiae (Capítulo 3). Dados preliminares indicam que o gene com maior expressão em xilose foi XYL3 e, dentre os transportadores putativos de xilose, XUT1. Esse trabalho representou uma das primeiras iniciativas no País no emprego de abordagens de engenharia metabólica para o desenvolvimento de um bioprocesso em linhagem industrial de S. cerevisiae. No seu conjunto, nossos resultados preliminares mostram que o desenvolvimento da tecnologia nacional para a produção de álcool lignocelulósico utilizando microrganismos modificados geneticamente é plenamente viável. Embora a linhagem obtida nesse estudo não tenha apresentado rendimentos de etanol desejáveis a partir de xilose, foi demonstrada a eficácia das ferramentas moleculares desenvolvidas que poderão ser empregada em futuros estudos. Além disso, comprovamos que as características genéticas da linhagem industrial JP1 a tornam uma interessante plataforma para futuras modificações relacionadas a outros bioprocessos. ______________________________________________________________________________ ABSTRACT / In order to achieve cost-effective, second-generation ethanol production from sugarcane bagasse, several stages of this bioprocess need to be technologically upgraded, which includes the genetic improvement of fermenting microorganisms. The yeast Saccharomyces cerevisiae is the most employed microbe to this purpose due to its excellent fermentative properties and high tolerance to the stressing conditions of large-scale industrial fermentation. Among the sugars that constitute sugarcane bagasse, xylose, a pentose abundant in the hemicellulosic fraction, is one of the most important. However, S. cerevisiae only uses hexoses in fermentation and is incapable of catabolising pentoses. The main goal of this project was to develop a xylose-fermenting yeast strain. Initially, we made genetic profiled the industrial S. cerevisiae strain JP1, which was to be subjected to the genetic manipulations in the pursuit of our goal (Chapter 1). We assessed that JP1 is diploid and heterothallic. It was also shown to be susceptible to the main drugs used in recombinant derivative selection and to be transformable with good efficiency. Next, we created an uracyl-auxotroph derivative by double-deleting the URA3 gene. Later, the JP1 strain was genetically modified to become able to ferment xylose to ethanol (Chapter 2). We created expression cassettes for two enzymes of the xylose catabolic pathway – xylose isomerase and xylulokinase – cloned into an episomal vector. The recombinant strain was submitted to metabolic adaptation for 48 days in medium with xylose as the sole carbon source, which led to an increase in the growth rate from 0.008 h-1 to 0.13 h-1. Preliminary studies of fermentation in synthetic medium revealed a buildup of xylitol (YX/S= 0,29 g g-1) and low ethanol production (YE/S= 0,27 g g-1) by this strain. In order to increase ethanol production, a deletion cassette for the GRE3 gene (aldose reductase) was developed. In addition, we considered introducing a gene coding for a membrane transporter with affinity for xylose to increase the influx of xylose to cell. To this end, we carried out a transcriptional analysis of the yeast Pichia stipitis (Scheffersomyces stipitis) CBS 5774 that had been adapted to sugarcane bagasse hydrolysate in order to understand gene regulation under different xylose and glucose concentrations and thus select a putative xylose transporter that could be expressed in S. cerevisiae (Chapter 3). Preliminary data indicate that the most upregulated gene with xylose as carbon source was XYL3 and, among putative xylose transporters, XUT1. The present work was one of the first attempts in the country to use metabolic engineering to develop a bioprocess in an industrial strain of S. cerevisiae. Overall, our preliminary results show that it is fully possible to develop national technology for production of ethanol from lignocellulosic residues using genetically modified microorganisms. Although the strain obtained in the present study did not show the desired ethanol yield from xylose, the molecular tools developed in this work were shown to be effective and validated to be used in future studies. Besides, we showed that the genetic features of the industrial strain JP1 make it interesting for future modifications related to other bioprocesses.
4

Modificações genéticas em Clostridium acetobutylicum visando o aumento da produção de álcoois

Gomes, Myrna Barbosa 21 August 2018 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). / Fontes limitadas de combustíveis fósseis, instabilidade no preço do petróleo e a necessidade de reduzir as emissões de dióxido de carbono na atmosfera estimulam a necessidade de se explorar novas tecnologias na produção de combustíveis líquidos usando matéria-prima renovável. Entre os biocombustíveis produzidos atualmente o butanol (1-butanol, n-butanol), desperta particular interesse, devido a características energéticas que o tornam um combustível promissor para motores de combustão. A biossíntese desse álcool está presente no gênero Clostridium, cujo metabolismo fermentativo é capaz de produzir acetona, butanol e etanol. Entretanto, a engenharia metabólica desses micro-organismos para produção de bioálcool é particularmente difícil de ser realizada, uma vez que as vias fermentativas são bastante ramificadas e possuem sistema de restrição diferenciado. O objetivo desse trabalho foi desenvolver um bioprocesso envolvendo modificações genéticas em cepas de C. acetobutylicum para o aumento da produção de álcoois. Para suplantar o sistema de restrição, linhagens de E. coli contendo o plasmídeo com o gene da metiltranferase otimizado (φ3TIm) foram utilizadas para metilação no DNA. A otimização da produção de álcoois foi realizada através do nocaute dos genes associados à formação de ácidos acético e butírico (pta e buk), assim como a expressão da álcool desidrogenase secundária de C. beijerinckii na linhagem resultante. Os resultados mostram que o DNA metilado em E. coli é resistente a ação da enzima de restrição Cac284I do C. acetobutylicum. Os genes pta e buk foram deletados e a produção de ácidos foi consideravelmente diminuída. O aumento da produção de butanol e etanol foi vista na cepa A1(Δpta), porém a cepa AB1 (ΔptaΔbuk) manteve os níveis produção butanol e de etanol semelhantes aos da cepa selvagem. Não houve produção de isopropanol em nenhum dos mutantes após a transformação com vetor epissomal. Esta proposta é uma das primeiras inciativas do país voltadas para a manipulação genética de clostrídios para a produção de biocombustíveis, os ganhos em termos de conhecimento serão bastante amplos e poderá servir como base para inúmeros desenvolvimentos futuros. / Limited sources of fossil fuels, instability in the price of oil and the need to reduce carbon dioxide emissions in the atmosphere stimulate the need to explore new technologies in the production of liquid fuels using renewable raw material. Among the currently produced biofuels, butanol (1-butanol, n-butanol) is particularly interesting because of the energetic characteristics that make it a promising fuel for combustion engines. The biosynthesis of this alcohol is present in the genus Clostridium, whose fermentative metabolism is capable of producing acetone, butanol and ethanol. However, the metabolic engineering of these microorganisms for bioalcohol production is particularly difficult to perform, since the fermentative pathways are quite branched and have a distinct restriction system. The aim of this work was to develop a bioprocess involving genetic modifications in C. acetobutylicum strains to increase the production of alcohols. To overcome the restriction system, E. coli strains containing the plasmid with the optimized methyltranferase gene (φ3TIm) were used for DNA methylation. The optimization of alcohol production was accomplished through the knockout of genes associated with the formation of acetic and butyric acids (pta and buk), as well as the expression of the secondary alcohol dehydrogenase (sadh) from C. beijerinckii in the resulting lineage. The results show that the methylated DNA in E. coli is resistant to the action of the Cac284I restriction enzyme of C. acetobutylicum. The pta and buk genes were deleted and acid production was considerably decreased. Increased production of butanol and ethanol was observed in strain A1 (Δpta), but strain AB1 (ΔptaΔbuk) maintained production of butanol and ethanol levels similar to wild type. There was no production of isopropanol in any of the mutants after episomal vector transformation. This work represents one of the first initiatives in Brazil aimed at the genetic manipulation of clostridia to produce biofuels and will pave the way for numerous future developments.
5

Engenharia metabólica em Pichia pastoris para produção de L-ácido lático a partir de glicerol, um resíduo da indústria de biodiesel

Lima, Pollyne Bororema Almeida de 09 June 2017 (has links)
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ecologia, 2017. / Submitted by Raquel Almeida (raquel.df13@gmail.com) on 2017-07-27T15:39:36Z No. of bitstreams: 1 2017_PollyneBororemaAlmeidadeLima.pdf: 7073248 bytes, checksum: a7c969e9336269c217c7c165b0bda9b5 (MD5) / Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2017-08-31T21:04:19Z (GMT) No. of bitstreams: 1 2017_PollyneBororemaAlmeidadeLima.pdf: 7073248 bytes, checksum: a7c969e9336269c217c7c165b0bda9b5 (MD5) / Made available in DSpace on 2017-08-31T21:04:19Z (GMT). No. of bitstreams: 1 2017_PollyneBororemaAlmeidadeLima.pdf: 7073248 bytes, checksum: a7c969e9336269c217c7c165b0bda9b5 (MD5) Previous issue date: 2017-08-31 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes). / O descarte de resíduos plásticos no meio ambiente associado à dependência de insumo petroquímico para produção dos mesmos tem gerado grande preocupação, levando à busca constante pelo desenvolvimento de tecnologias verdes renováveis. Segundo a Plastics Europe, em 2016, 25,8 milhões de toneladas de resíduos de plástico pós-consumo acabaram nos fluxos oficiais de resíduos. Destes, 69,2% foi recuperado através de processos de reciclagem e recuperação de energia, enquanto 30,8% continuaram a ser depositados em aterros sanitários. Uma alternativa a utilização de plásticos derivados de petróleo é a produção de plásticos biodegradáveis, como o PLA -poli(ácido lático)-, pois além de ter tempo de degradação diminuído, é produzido a partir de fontes renováveis em bioprocessos estabelecidos, como exemplo, a fermentação microbiana. Dentre os diferentes microrganismos utilizados no estabelecimento destes bioprocessos, a utilização de leveduras é vantajosa, por produzirem metabólitos, proteínas recombinantes e permitir manipulação gênica para otimização. A levedura metilotrófica Pichia pastoris tem sido bastante utilizada em processos fermentativos por atingir altas densidades celulares e produzir poucos co-produtos. Além disso, esta é capaz de utilizar glicerol como única fonte de carbono, principal resíduo da indústria do biodiesel. Porém, não é capaz de produzir ácido lático, monômero utilizado na síntese de PLA. Assim o presente estudo teve como objetivo a construção de cepas geneticamente modificadas de P. pastoris capazes de produzir ácido lático utilizando glicerol como substrato. Para isto, o gene codificador da enzima lactato desidrogenase bovina (Bos taurus) foi inserido no genoma de P.pastoris, permitindo que a cepa X-33 produzisse ácido lático. Embora P. pastoris seja conhecida por seu metabolismo respiratório, as fermentações em batelada realizadas com baixa oxigenação aumentou a produção de ácido láctico em 20%, indicando que nesta situação o metabolismo fermentativo prevaleceu. Além disso, um novo transportador putativo de lactato de P. pastoris denominado PAS, foi identificado por similaridade de pesquisa com o transportador de lactato de Saccharomyces cerevisiae Jen1p. Ambos os transportadores heterólogos e homólogos, Jen1p e PAS, foram avaliados em uma cepa que já continha atividade LDH. As fermentações em batelada das cepas de P. pastoris com o transportador de lactato foram realizadas em condições aeróbicas seguida por uma fase de oxigênio limitado, nesta a produção de ácido lático foi maior. Os resultados mostraram que a cepa contendo o transportador PAS apresentou o maior rendimento, 0,7 g/g (ácido lático/ glicerol). / The disposal of plastic waste in the environment associated with the dependence of petrochemical input for its production has generated great environmental concern, leading to the constant search for the development of green technologies. According to Plastics Europe, in 2016, 25.8 million tonnes of post-consumer plastic waste ended up in official waste streams. Of these, 69.2% was recovered through recycling and energy recovery processes, while 30.8% continued to be deposited in landfills. An alternative to the use of petroleum-based plastics is the production of biodegradable plastics, such as PLA –poly (lactic acid)-, in addition to having decreased degradation time, it is produced from renewable sources in established bioprocesses, such as microbial fermentation. Among the different microorganisms used in the establishment of these bioprocesses, the use of yeasts is advantageous, because they produce metabolites, recombinant proteins and allow gene manipulation for optimization. The methylotrophic yeast Pichia pastoris has been widely used in fermentative processes because it reaches high cell densities and produces few co-products. In addition, it is able to use glycerol as a unique carbon source, the main residue of the biodiesel industry. However, it is not capable of producing lactic acid, the monomer used in PLA synthesis. Thus the present study had as objective the construction of genetically modified strains of P. pastoris capable of producing lactic acid using glycerol as substrate. For this, the gene encoding bovine (Bos taurus) lactate dehydrogenase enzyme was inserted into the genome of P.pastoris, allowing strain X-33 to produce lactic acid. Batch fermentation of the P. pastoris X-33 strain producing LDHb allowed for lactic acid production in this yeast. Although P. pastoris is known for its respiratory metabolism, batch fermentations were performed with different oxygenation levels, indicating that lower oxygen availability increased lactic acid production by 20 %, pushing the yeast towards a fermentative metabolism. Furthermore, a newly putative lactate transporter from P. pastoris named PAS has been identified by search similarity with the lactate transporter from Saccharomyces cerevisiae Jen1p. Both heterologous and homologous transporters, Jen1p and PAS, were evaluated in one strain already containing LDH activity. Fed-batch experiments of P. pastoris strains carrying the lactate transporter were performed with the batch phase at aerobic conditions followed by an aerobic oxygen-limited phase where production of lactic acid was favored. The results showed that the strain containing PAS presented the highest lactic acid titer, reaching a yield of approximately 0.7 g/g (lactic acid/ glycerol).

Page generated in 0.1424 seconds