• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

LEVITATED OPTOMECHANICS NEAR A SURFACE

Peng Ju (19138651) 17 July 2024 (has links)
<p dir="ltr">Following the development of laser technology in the 1960s, radiation pressure was soon employed to manipulate particles by Arthur Ashkin in the 1970s. Since then, levitated optomechanics has been widely studied across physics, engineering, chemistry, and biology. In this dissertation, we first experimentally demonstrate GHz rotation and sensing with an optically levitated nanodumbbell near a surface. Then, we propose achieving optical refrigeration below liquid nitrogen temperature using near-field Purcell enhancement.</p><p dir="ltr">The first part of this dissertation focuses on fast rotation and sensing with a non-spherical silica nanoparticle levitated near a surface. Specifically, we optically levitate a nanodumbbell at 430 nm away from a surface in high vacuum and drive it to rotate at 1.6 GHz. This corresponds to a relative linear velocity of 1.4 km/s between the tip of the nanodumbbell and the surface at sub-micrometer separation. The near-surface rotating nanodumbbell demonstrates a superior torque sensitivity of (5.0 +/- 1.1 ) x 10<sup>-26</sup> Nm at room temperature. Our numerical simulation shows that such an ultra-sensitive nanodumbbell levitated near nanostructures can be used to detect fundamental physics, such as Casimir torque and non-Newtonian gravity. </p><p dir="ltr">In the latter part of this dissertation, we propose that optical refrigeration of solid with anti-Stokes fluorescence can be enhanced by Purcell effect. The spontaneous emission rate of high-energy photons is Purcell enhanced by coupling with a near-field cavity. The enhanced emission shifts the mean emission wavelength and enables optical refrigeration with high-absorption cooling laser. We estimate a minimum achievable temperature of 38 K with a Yb<sup>3+</sup>:YLiF<sub>4</sub> nanocrystal near a cavity using our proposed Purcell enhanced optical refrigeration method. This method can be applied to other rare-earth ion doped materials and enable applications that require solid-state cooling below liquid nitrogen temperature.</p>
2

Heating and Cooling Mechanisms for the Thermal Motion of an Optically Levitated Nanoparticle

Troy A Seberson (9643427) 16 December 2020 (has links)
<pre>Bridging the gap between the classical and quantum regimes has consequences not only for fundamental tests of quantum theory, but for the relation between quantum mechanics and gravity. The field of levito-dynamics provides a promising platform for testing the hypotheses of the works investigating these ideas. By manipulating a macroscopic particle's motion to the scale of its ground state wavefunction, levito-dynamics offers insight into the macroscopic-quantum regime.</pre><pre><br></pre><pre>Ardent and promising research has brought the field of levito-dynamics to a state in which these tests are available. Recent work has brought a mesoscopic particle's motion to near the ground state. Several factors of decoherence are limiting efficient testing of these fundamental theories which implies the need for alternative strategies for achieving the same goal. This thesis is concerned with investigating alternative methods that may enable a mesoscopic particle to reach the quantum regime. </pre><pre><br></pre><pre><pre>In this thesis, three theoretical proposals are studied as a means for a mesoscopic particle to reach the quantum regime as well as a detailed study into one of the most important factors of heating and decoherence for optical trapping. The first study of cooling a particle's motion highlights that the rotational degrees of freedom of a levitated symmetric-top particle leads to large harmonic frequencies compared to the translational motion, offering a more accessible ground state temperature after feedback cooling is applied. An analysis of a recent experiment under similar conditions is compared with the theoretical findings and found to be consistent. <br></pre> <pre>The second method of cooling takes advantage of the decades long knowledge of atom trapping and cooling. By coupling a spin-polarized, continuously Doppler cooled atomic gas to a magnetic nanoparticle through the dipole-dipole interaction, motional energy is able to be removed from the nanoparticle. Through this method, the particle is able to reach near its quantum ground state provided the atoms are at a temperature below the nanoparticle ground state temperature and the atom number is sufficiently large.</pre> <pre>The final investigation presents the dynamics of an optically levitated dielectric disk in a Gaussian standing wave. Though few studies have been performed on disks both theoretically and experimentally, our findings show that the stable couplings between the translational and rotational degrees of freedom offer a possibility for cooling several degrees of freedom simultaneously by actively cooling a single degree freedom.</pre></pre>

Page generated in 0.0514 seconds