1 |
Carbon Nanotubes and Molybdenum Disulfide Protected Electrodes for High Performance Lithium-Sulfur Battery ApplicationsCha, Eunho 08 1900 (has links)
Lithium-sulfur (Li-S) batteries are faced with practical drawbacks of poor cycle life and low charge efficiency which hinder their advancements. Those drawbacks are primarily caused by the intrinsic issues of the cathodes (sulfur) and the anodes (Li metal). In attempt to resolve the issues found on the cathodes, this work discusses the method to prepare a binder-free three-dimensional carbon nanotubes-sulfur (3D CNTs-S) composite cathode by a facile and a scalable approach. Here, the 3D structure of CNTs serves as a conducting network to accommodate high loading amounts of active sulfur material. The efficient electron pathway and the short Li ions (Li+) diffusion length provided by the 3D CNTs offset the insulating properties of sulfur. As a result, high areal and specific capacities of 8.8 mAh cm−2 and 1068 mAh g−1, respectively, with the sulfur loading of 8.33 mg cm−2 are demonstrated; furthermore, the cells operated at a current density of 1.4 mA cm−2 (0.1 C) for up to 150 cycles. To address the issues existing on the anode part of Li-S batteries, this work also covers the novel approach to protect a Li metal anode with a thin layer of two-dimensional molybdenum disulfide (MoS2). With the protective layer of MoS2 preventing the growth of Li dendrites, stable Li electrodeposition is realized at the current density of 10 mA cm−2; also, the MoS2 protected anode demonstrates over 300% longer cycle life than the unprotected counterpart. Moreover, the MoS2 layer prevents polysulfides from corroding the anode while facilitating a reversible utilization of active materials without decomposing the electrolyte. Therefore, the MoS2 protected anode enables a stable cycle life of over 500 cycles at 0.5 C with the high sulfur loading amount of ~7 mg cm−2 (~67 wt% S content in cathode) under the low electrolyte/sulfur (E/S) ratio of 6 μL mg−1. This translates to the specific energy and power densities of ~550 Wh kg-1 and ~300 W kg−1, respectively. Additionally, such values far exceed the electrochemical performance of the current Li-ion batteries. Therefore, the synergetic effect of utilizing the 3D CNT-S cathode and the MoS2 protected Li anode will allow the Li-S batteries to become applicable for the transportation and the large-scale energy grid applications.
|
2 |
Highly Concentrated Electrolytes for Lithium Batteries : From fundamentals to cell testsNilsson, Viktor January 2018 (has links)
The electrolyte is a crucial part of any lithium battery, strongly affecting longevity and safety. It has to survive rather severe conditions, not the least at the electrode/electrolyte interfaces. Current commercial electrolytes based on 1 M LiPF 6 in a mixture of organic solvents balance the requirements on conductivity and electrochemical stability, but they are volatile and degrade when operated at temperatures above ca. 70°C. The salt could potentially be replaced with e.g. LiTFSI, but corrosion of the aluminium current collector is an issue. Replacing the graphite negative electrode by Li metal for large gains in energy density challenges the electrolyte further by exposing it to freshly deposited Li, leading to poor coulombic efficiency (CE) and consumption of both Li and electrolyte. Highly concentrated electrolytes (up to > 4 M) have emerged as a possible remedy, by a changed solvation structure such that all solvent molecules are coordinated to cations – leading to a lowered volatility and melting point, an increased charge carrier density and electrochemical stability, but a higher viscosity and a lower ionic conductivity. Here two approaches to highly concentrated electrolytes are evaluated. First, LiTFSI and acetonitrile electrolytes with respect to increased electrochemical stability and in particular the passivating solid electrolyte interphase (SEI) on the anode is studied using electrochemical techniques and X-ray photoelectron spectroscopy. Second, lowering the liquidus temperature by high salt concentration is utilized to create an electrolyte solely of LiTFSI and ethylene carbonate, tested for application in Li metal batteries by characterizing the morphology of plated Li using scanning electron microscopy and the CE by galvanostatic polarization. While the first approach shows dramatic improvements, the inherent weaknesses cannot be completely avoided, the second approach provides some promising cycling results for Li metal based cells. This points towards further investigations of the SEI, and possibly long-term safe cycling of Li metal anodes. / Elektrolyten är en fundamental del av ett litiumbatteri som starkt påverkar livslängden och säkerheten. Den måste utstå svåra förhållanden, inte minst vid gränsytan mot elektroderna. Dagens kommersiella elektrolyter är baserade på 1 M LiPF 6 i en blandning av organiska lösningsmedel. De balanserar kraven på elektrokemisk stabilitet och jonledningsförmåga, men de är lättflyktiga och bryts ned när de används vid temperaturer över ca. 70°C. Saltet skulle kunna bytas ut mot t.ex. LiTFSI, vilket ökar värmetåligheten avsevärt, men istället uppstår problem med korrosion på den strömsamlare av aluminium som används för katoden. Genom att byta ut grafitanoden i ett Li-jonbatteri mot en folie av litiummetall kan man öka energitätheten, men då litium pläteras bildas ständigt nya Li-ytor som kan reagera med elektrolyten. Detta leder till en låg coulombisk effektivitet genom nedbrytning av både Li och elektrolyt. Högkoncentrerade elektrolyter har en mycket hög saltkoncentration, ofta över 4 M, och har lags fram som en möjlig lösning på många av de problem som plågar denna och nästa generations batterier. Dessa elektrolyter har en annorlunda lösningsstruktur, sådan att alla lösningsmedelsmolekyler koordinerar till katjoner – vilket leder till att de blir mindre lättflyktiga, får en ökad täthet av laddningsbärare, och en ökad elektrokemisk stabilitet. Samtidigt får de en högre viskositet och lägre jonledningsförmåga. Här har två angreppssätt för högkoncentrerade elektrolyter utvärderats. I det första har acetonitril, som har begränsad elektrokemisk stabilitet och ett högt ångtryck, blandats med LiTFSI för en uppsättning av elektrolyter med varierande koncentration. Dessa har testats i Li-jonbatterier och i synnerhet den passiverande ytan på grafitelektroder har undersökts med både röntgen-fotoelektronspektroskopi (XPS) och elektrokemiska metoder. En markant förbättring av den elektrokemiska stabiliteten observeras, men de inneboende bristerna hos elektrolyten kan inte kompenseras fullständigt, vilket skapar tvivel på hur väl detta kan fungera i en kommersiell cell. Med det andra angreppssättet har hög saltkoncentration nyttjats för sänka smältpunkten för en elektrolyt baserad på etylenkarbonat, som annars inte kan används som enda lösningsmedel. Dessa elektrolyter har testats för användning i Limetall-batterier genom långtidstest, mätning av den coulombiska effektiviteten och analys av deponerade Li-ytor med svepelektronmikroskop. Resultaten är lovande, med över 250 cykler på 0.5 mAh/cm2 och en effektivitet på över 94%, men framförallt observeras en mycket jämnare deponerad Li-yta, vilket kan möjliggöra säker cykling av Li-metall-batterier. Ett logiskt nästa steg är studier av Liytan med t.ex. XPS för att utröna vad som skiljer den från ytan som bildats i en 1 M referenselektrolyt.
|
3 |
Mesoscale Physics of Electrified Interfaces with Metal ElectrodesBairav Sabarish Vishnugopi (15302419) 17 April 2023 (has links)
<p>Li-ion batteries (LIBs) are currently pervasive across portable electronics and electric vehicles and are on the ascent for large-scale applications such as grid storage. However, commercial LIBs based on intercalation chemistries are inching toward their theoretical energy density limits. Consequently, the rapidly growing demands of energy storage have necessitated a recent renaissance in exploring battery systems beyond Li-ion chemistry. Next-generation batteries that utilize Li metal as the anode can improve the energy density and power density of LIBs. Despite the theoretical promise, the commercialization of metal-based batteries requires overcoming several hurdles, stemming from the unstable nature of Li in liquid electrolytes. Upon repeated charging, the metal anode undergoes unrestricted growth of dendrites, devolving to a thermal runaway in extreme circumstances. By replacing the organic liquid electrolyte with a non-flammable solid electrolyte, solid-state batteries (SSBs) can potentially provide enhanced safety attributes over liquid electrolyte cells. Upon pairing of solid electrolytes with a Li metal anode, such systems present the unique possibility of engineering batteries with high energy density and fast charging rates. However, there are a number of technical challenges and fundamental scientific advances necessary for SSBs to achieve reliable electrochemical performance. The formation of dendritic morphologies during charging and the loss of active area at the anode-electrolyte interface during discharging are two critical limitations that need to be addressed.</p>
<p>In this thesis, the morphological stability of the Li metal anode is examined based on the mechanistic interaction of electrochemical reaction, ionic transport and surface self-diffusion, that is further dependent on aspects including the thermal field and electrolyte composition. The origin of electrochemical-mechanical instability and metal penetration due to heterogeneities in solid-state electrolytes such as grain boundaries will be analyzed. The phenomenon of contact loss at solid-solid interfaces due to the competing interaction between electrochemical dissolution and Li mechanics will be studied. Lastly, the mechanistic attributes governing the thermal stability of solid-solid interfaces in solid-state batteries will be examined. Overall, the dissertation will focus on understanding the fundamental mechanisms underlying the evolution of solid-liquid and solid-solid interfaces in energy storage and derive potential design guidelines toward achieving stable morphologies in metal-based batteries.</p>
|
4 |
Investigation on Coupling Phenomena between Morphological Variations and Mass Transfer Rate on Lithium Metal Negative Electrode for Rechargeable Batteries with High Performance and Safety / 安全な高性能二次電池のためのリチウム金属負極における形態変化と物質移動速度の連結現象に関する研究Nishida, Tetsuo 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(エネルギー科学) / 甲第24713号 / エネ博第456号 / 新制||エネ||85(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻 / (主査)教授 野平 俊之, 教授 萩原 理加, 教授 佐川 尚 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
|
5 |
Interface Engineering of Solid-State Li Metal Batteries with Garnet Electrolytes / ガーネット電解質を用いたリチウム金属電池の界面工学に関する研究Cheng, Eric Jianfeng 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24632号 / 工博第5138号 / 新制||工||1982(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 安部 武志, 教授 作花 哲夫, 教授 陰山 洋 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
6 |
Development and Characterization of Advanced Polymer Electrolyte for Energy Storage and Conversion DevicesWang, Ying 09 January 2017 (has links)
Among the myraid energy storage technologies, polymer electrolytes have been widely employed in diverse applications such as fuel cell membranes, battery separators, mechanical actuators, reverse-osmosis membranes and solar cells. The polymer electrolytes used for these applications usually require a combination of properties, including anisotropic orientation, tunable modulus, high ionic conductivity, light weight, high thermal stability and low cost. These critical properties have motivated researchers to find next-generation polymer electrolytes, for example ion gels.
This dissertation aims to develop and characterize a new class of ion gel electrolytes based on ionic liquids and a rigid-rod polyelectrolyte. The rigid-rod polyelectrolyte poly (2,2'-disulfonyl-4,4'-benzidine terephthalamide) (PBDT) is a water-miscible system and forms a liquid crystal phase above a critical concentration. The diverse properties and broad applications of this rigid-rod polyelectrolyte may originate from the double helical conformation of PBDT molecular chains.
We primarily develop an ionic liquid-based polymer gel electrolyte that possesses the following exceptional combination of properties: transport anisotropy up to 3.5×, high ionic conductivity (up to 8 mS cm⁻¹), widely tunable modulus (0.03 – 3 GPa) and high thermal stability (up to 300°C). This unique platform that combines ionic liquid and polyelectrolyte is essential to develop more advanced materials for broader applications.
After we obtain the ion gels, we then mainly focus on modifying and then applying them in Li-metal batteries. As a next generation of Li batteries, the Li-metal battery offers higher energy capacity compared to the current Li-ion battery, thus satisfying our requirements in developing longer-lasting batteries for portable devices and even electric vehicles. However, Li dendrite growth on the Li metal anode has limited the pratical application of Li-metal batteries. This unexpected Li dendrite growth can be suppressed by developing polymer separators with high modulus (~ Gpa), while maintaining enough ionic conductivity (~ 1 mS/cm). Here, we describe an advanced solid-state electrolyte based on a sulfonated aramid rigid-rod polymer, an ionic liquid (IL), and a lithium salt, showing promise to make a breakthrough. This unique fabrication platform can be a milestone in discovering next-generation electrolyte materials. / Ph. D. / Among the myraid energy storage technologies, polymer-based electrolytes have been widely employed in diverse applications such as fuel cell membranes, battery electrolytes, “artificial muscle” mechanical actuators, reverse-osmosis membranes and solar cells. The materials used for each of these applications usually require a specific combination of properties, which include anisotropic orientation, tunable mechanical stiffness (modulus), high ionic conductivity, light weight, high thermal stability and low cost. These critical properties have motivated researchers to find next-generation polymer-based electrolytes, for example “ion gels” that consist of a polymer combined with ionic liquids or salts.
This thesis describes development of an ion gel that possesses the following exceptional combination of properties: high ionic conductivity (up to 8 mS cm<sup>-1</sup>), widely tunable modulus (0.03 ‒ 3 GPa), ion transport anisotropy up to 3.5×, and high thermal stability (up to 300°C). Thus, this unprecedented material shows liquid-like ion motions inside a matrix with solid-like stiffness, and in a material that can withstand extreme temperatures and will not burn.
After obtaining these ion gels, we are then mainly focusing on modifying them for application in safe and high density Li-metal batteries. As a next generation of Li batteries, the Li-metal battery offers higher energy capacity compared to the current Liion battery, thus satisfying our requirements in developing longer-lasting batteries for portable devices and even electric vehicles. However, Li dendrite growth on the Li metal anode has limited the pratical application of Li-metal batteries. This unexpected Li dendrite growth can be supressed by developing polymer electrolytes with high modulus (~ GPa), while maintaining sufficient ionic conductivity (~ 1 mS/cm) for efficient battery operation.
In short, this thesis describes an advanced solid-state electrolyte based on a kevlar-like (sulfonated aramid) rigid-rod polymer, an ionic liquid (IL), and a lithium salt, showing promise to make a breakthrough and enable practical Li-metal batteries. Furthermore, the unique fabrication platform for these ion gels represents a new paradigm for discovering next-generation electrolyte materials for a wide variety of applications.
|
7 |
Improving the Electrochemical Performance and Safety of Lithium-Ion Batteries Via Cathode Surface EngineeringKum, Lenin Wung 07 August 2023 (has links)
No description available.
|
8 |
Mesoscale Interactions in Solid-State ElectrodesKaustubh Girish Naik (20343684) 10 January 2025 (has links)
<p dir="ltr">Lithium-ion batteries (LIBs) are at the forefront of the energy storage technology for portable electronic devices and are playing a pivotal role in vehicle electrification. As the conventional LIBs consisting of a graphite anode and a transition metal oxide cathode approach their theoretical energy density limits, significant research efforts are being made towards developing next-generation batteries that can meet the ever-increasing energy density demands. In this regard, solid-state batteries (SSBs), employing lithium metal anode and a composite cathode, have garnered significant attention as a promising alternative to conventional LIBs, offering enhanced energy density and safety. However, the development of stable, high-performance SSBs is hindered by several interfacial and chemo-mechanical challenges due to solid-solid nature of interfaces. Limited solid-solid contact between the interacting species leads to severe transport and reaction limitations, which exacerbate during cycling due to progressive delamination at the interfaces. Such a phenomenon also results in current constriction at the remaining point contacts, which ultimately leads in the formation of electrochemical and mechanical hotspots within the SSB, impacting both the rate capability and cycling performance.</p><p dir="ltr">In this thesis, a comprehensive mesoscale investigation of solid-state battery (SSB) cathode architectures will be presented, elucidating the complex interplay between microstructure, kinetic-transport interactions and chemo-mechanical coupling. By examining the key limiting mechanisms that manifest at various SSB cathode microstructural regimes, a mechanistic design map highlighting the dichotomy in reaction and ionic/electronic transport limitations will be established. The impact of cathode microstructural heterogeneity on spatio-temporal dynamics, thermo-electrochemical behavior, and lithium metal anode stability will be revealed. In addition, the impact of stack pressure on solid-state cathode performance will be studied and how stack pressure influences the microstructure-dependent reaction and transport interactions will be delineated. Lastly, this thesis will investigate crystallographically oriented dense cathode architectures for high energy density SSBs, providing critical insights into their performance limitations and potential pathways for optimization. Overall, the dissertation will focus on the fundamental insights into the mesoscale behavior of the solid-state cathodes and establish the mechanistic pain points and design guidelines for consideration in the future development of improved SSB cathode architectures.</p>
|
Page generated in 0.0627 seconds