• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Resource aquisition and allocation in lichens

Dahlman, Lena January 2003 (has links)
<p>Lichens are fascinating symbiotic systems, where a fungus and a unicellular alga, most often green (bipartite green algal lichens; 90% of all lichens), or a fi lamentous cyanobacterium (bipartite cyanobacterial lichens; 10% of all lichens) form a new entity (a thallus) appearing as a new and integrated organism: in about 500 lichens the fungus is associated with both a cyanobacterium and an alga (tripartite lichens). In the thallus, the lichen bionts function both as individual organisms, and as a symbiont partner. Hence, in lichens, the participating partners must both be able to receive and acquire resources from the other partner(s) in a controlled way.</p><p>Lichens are particularly successful in harsh terrestrial environments. In part this is related to their poikilohydric nature and subsequent ability to repeatedly become desiccated and hydrated. Metabolic activity, i.e. photosynthesis, respiration, and for cyanobacterial lichens N2-fixation, is limited to periods when the thallus is suffi ciently hydrated. Mineral nutrients are mainly acquired from dry or wet deposition directly on the thallus. Taken together it then appears that lichens are to a large extent passively controlled by their environment, making their control over resource allocation and acquisition particularly challenging.</p><p>The aim of this thesis was to investigate resource acquisition and allocation processes in different lichens, and to see how these respond to changes in resource availability. This was done by following lichen growth in the fi eld during manipulation of water, light, and nutrient supply, and by assessing the responses of both the integrated thallus as well as the individual bionts. As a fi rst step, resource allocation and acquisition was investigated for a broad range of lichens aiming to determine the magnitude of metabolic variation across lichens. Seventy-fi ve lichen species were selected to cover as broad a spectrum as possible regarding taxonomy, morphology, habitat, and nitrogen requirements. The lichens had invested their nitrogen resources so that photosynthetic capacity matched respiratory carbon demand around a similar equilibrium across the contrasting species. Regulation of lichen growth was investigated in another study, using the two tripartite species <i>Nephroma arcticum</i> and <i>Peltigera aphthosa</i>, emphasizing the contribution of both internal and external factors. The empirical growth models for the two lichens were similar, showing that weight gain is to a higher extent dependent on those external factors that regulate their photosynthesis, whilst area gain is more controlled by internal factors, such as their nitrogen metabolism. This might be inferred from another study of the same species, where nitrogen manipulations resulted in an undisturbed weight gain, a similar resource allocation pattern between the bionts, but a distorted area gain. </p><p>Aiming to investigate lichen nitrogen relations even further, lichens’ capacities to assimilate combined nitrogen in the form of ammonium, nitrate and amino acids were assessed using 14 contrasting boreal species. All these had the capacity to assimilate all the three nitrogen forms, with ammonium absorption being more passive, and nitrate uptake being low in bipartite cyanobacterial lichens. Differences in uptake capacities between species were more correlated to photobiont than to morphology or substrate preferences. Finally, to investigate intra-specifi c plasticity in relation to altered nutrient supply, resource investments between photo- and mycobiont were investigated in the two bipartite green algal lichens <i>Hypogymnia physodes </i>and and <i>Platismatia glauca</i> in a low and a high nutrient environ- in a low and a high nutrient environ- ment. In both species, more of the resources had been directed to the photobiont in the high nutrient environment also increasing their overall carbon status. Taken together, my studies indicate that in spite of the apparent passive environmental control on lichen metabolism, these symbiotic organisms are able to both optimize and control their resource acquisition and allocation processes.</p>
2

Resource aquisition and allocation in lichens

Dahlman, Lena January 2003 (has links)
Lichens are fascinating symbiotic systems, where a fungus and a unicellular alga, most often green (bipartite green algal lichens; 90% of all lichens), or a fi lamentous cyanobacterium (bipartite cyanobacterial lichens; 10% of all lichens) form a new entity (a thallus) appearing as a new and integrated organism: in about 500 lichens the fungus is associated with both a cyanobacterium and an alga (tripartite lichens). In the thallus, the lichen bionts function both as individual organisms, and as a symbiont partner. Hence, in lichens, the participating partners must both be able to receive and acquire resources from the other partner(s) in a controlled way. Lichens are particularly successful in harsh terrestrial environments. In part this is related to their poikilohydric nature and subsequent ability to repeatedly become desiccated and hydrated. Metabolic activity, i.e. photosynthesis, respiration, and for cyanobacterial lichens N2-fixation, is limited to periods when the thallus is suffi ciently hydrated. Mineral nutrients are mainly acquired from dry or wet deposition directly on the thallus. Taken together it then appears that lichens are to a large extent passively controlled by their environment, making their control over resource allocation and acquisition particularly challenging. The aim of this thesis was to investigate resource acquisition and allocation processes in different lichens, and to see how these respond to changes in resource availability. This was done by following lichen growth in the fi eld during manipulation of water, light, and nutrient supply, and by assessing the responses of both the integrated thallus as well as the individual bionts. As a fi rst step, resource allocation and acquisition was investigated for a broad range of lichens aiming to determine the magnitude of metabolic variation across lichens. Seventy-fi ve lichen species were selected to cover as broad a spectrum as possible regarding taxonomy, morphology, habitat, and nitrogen requirements. The lichens had invested their nitrogen resources so that photosynthetic capacity matched respiratory carbon demand around a similar equilibrium across the contrasting species. Regulation of lichen growth was investigated in another study, using the two tripartite species Nephroma arcticum and Peltigera aphthosa, emphasizing the contribution of both internal and external factors. The empirical growth models for the two lichens were similar, showing that weight gain is to a higher extent dependent on those external factors that regulate their photosynthesis, whilst area gain is more controlled by internal factors, such as their nitrogen metabolism. This might be inferred from another study of the same species, where nitrogen manipulations resulted in an undisturbed weight gain, a similar resource allocation pattern between the bionts, but a distorted area gain. Aiming to investigate lichen nitrogen relations even further, lichens’ capacities to assimilate combined nitrogen in the form of ammonium, nitrate and amino acids were assessed using 14 contrasting boreal species. All these had the capacity to assimilate all the three nitrogen forms, with ammonium absorption being more passive, and nitrate uptake being low in bipartite cyanobacterial lichens. Differences in uptake capacities between species were more correlated to photobiont than to morphology or substrate preferences. Finally, to investigate intra-specifi c plasticity in relation to altered nutrient supply, resource investments between photo- and mycobiont were investigated in the two bipartite green algal lichens Hypogymnia physodes and and Platismatia glauca in a low and a high nutrient environ- in a low and a high nutrient environ- ment. In both species, more of the resources had been directed to the photobiont in the high nutrient environment also increasing their overall carbon status. Taken together, my studies indicate that in spite of the apparent passive environmental control on lichen metabolism, these symbiotic organisms are able to both optimize and control their resource acquisition and allocation processes.
3

Forest edges in boreal landscapes - factors affecting edge influence

Jansson, Ulrika January 2009 (has links)
The boreal forest in Fennoscandia has been subjected to major loss and fragmentation of natural forests due to intensive forestry. This has resulted in that forest edges are now abundant and important landscape features. Edges have documented effects on the structure, function and biodiversity in forests. Edge influence on biodiversity is complex and depends on interactions between many local and regional factors. This thesis focuses on sharp forest edges and their potential to influence biodiversity at the landscape-level. I have developed a method for quantification and characterization of sharp forest edges by interpretation of colour infrared (CIR) aerial photographs in combination with line intersect sampling (LIS) and sample plots. The method was used to estimate density of forest edge in 28 landscapes (each 1600 ha) in northern Sweden, differing in management intensity, landscape composition and geographical location. Forest edges were described in detail using edge, canopy and neighbourhood attributes. By combining these attributes it was possible to classify edges with respect to levels of exposure. A field experiment was conducted to examine the effect of edge contrast on growth of the old forest lichen Usnea longissima. The edge quantification method is accurate and efficient for estimating the length of sharp forest edges on an area basis (edge density, m ha-1) and for collecting detailed attributes of edges and their surroundings. In northern Sweden, the forest edge density is high (54 m ha-1) but varies extensively (12-102 m ha-1) between landscapes. Edge density is strongly correlated with the level of human disturbance and increases towards the southern part of the study area, at lower altitudes were management intensity is highest. Edge orientation, contrast and neighbourhood size shows an immense variation between edges and also varies between edge types. Regenerating edges are generally of higher contrast and face larger neighbourhoods than natural edges. Maintained edges had high contrast but small neighbourhoods. A larger proportion of edges in mature forests are highly exposed to microclimatic edge influence than edges in general. The field experiment revealed that growth of U. longissima was highest near edges where the vegetation on the adjacent area was sheltering, but not shading, the lichen. In the present thesis, I have provided a valuable tool for estimating density of forest edges with potential to yield information on important factors determining edge influence at landscape-level. The large variability in edge density, edge and neighbourhood attributes imply large differences in microclimate anf thus in the potential for ede influence. Management and conservation strategies must incorporate these factors to realistically address edge influence on biota at the landscape-level.

Page generated in 0.0547 seconds