• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The structure of the second derived ideal of free centre-by-metabelian Lie rings

Mansuroglu, Nil January 2014 (has links)
We study the free centre-by-metabelian Lie ring, that is, the free Lie ring with the property that the second derived ideal is contained in the centre. We exhibit explicit generating sets for the homogeneous components and the fine homogeneous components of the second derived ideal. Each of these components is a direct sum of a free abelian group and a (possibly trivial) elementary abelian $2$-group. Our generating sets are such that some of their elements generate the torsion subgroup while the remaining ones freely generate a free abelian group. A key ingredient of our approach is the determination of the dimensions of the corresponding homogeneous components of the free centre-by-metabelian Lie algebra over fields of characteristic other than $2$. For this we exploit a $6$-term exact sequence of modules over a polynomial ring that is originally defined over the integers, but turns into a sequence whose terms are projective modules after tensoring with a suitable field. Our results correct a partly erroneous theorem in the literature. Moreover, we study the product of three homogeneous components of a free Lie algebra. Let $L$ be a free Lie algebra of finite rank over a field and let $L_n$ denote the degree $n$ homogeneous component of $L$. Formulae for the dimension of the subspaces $[L_n,L_m]$ for all $n$ and $m$ were obtained by Ralph St\"{o}hr and Michael Vaughan-Lee. Formulae for the dimension of the subspaces of the form $[L_n,L_m,L_k]$ under certain conditions on $n,m$ and $k$ were obtained by Nil Mansuro\u{g}lu and Ralph St\"{o}hr. Surprisingly, in contrast to the case of a product of two homogeneous components, the dimension of such products may depend on the characteristic of the field. For example, the dimension of $[L_2,L_2,L_1]$ over fields of characteristic $2$ is different from the dimension over fields of characteristic other than $2$.
2

Ação de automorfismos livres de pontos fixos / Zn-graded lie rings with fixed point free automorphisms

Araujo, Daniel dos Santos 13 May 2016 (has links)
Submitted by Jaqueline Silva (jtas29@gmail.com) on 2016-09-12T21:09:34Z No. of bitstreams: 2 Dissertação - Daniel dos Santos Araújo - 2016.pdf: 1529885 bytes, checksum: 8ed172afb4beaab8a7bf1c612425044f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-09-12T21:09:45Z (GMT) No. of bitstreams: 2 Dissertação - Daniel dos Santos Araújo - 2016.pdf: 1529885 bytes, checksum: 8ed172afb4beaab8a7bf1c612425044f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-09-12T21:09:45Z (GMT). No. of bitstreams: 2 Dissertação - Daniel dos Santos Araújo - 2016.pdf: 1529885 bytes, checksum: 8ed172afb4beaab8a7bf1c612425044f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-05-13 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / If a Zn-graded Lie ring L admits a fixed point free automorphism of order n, then L is soluble and the derived length of L is bounded in function only on n. In this work, we study some results about the derived length of the Zn-graded Lie rings and in the particular case that n = 6, we also study properties to the nilpotency class of the lower central series of L. For this, we introduce some basic results of Lie algebras theory and Lie rings, as well preliminary concepts of modules and tensor product. Finally, we study a Lie ring associated to a group once many problems in group theory can be treated by linear methods about Lie algebras and Lie rings. / Um anel de Lie Zn-graduado L, que admite um automorfismo livre de pontos fixos de ordem n é solúvel e tem comprimento derivado limitado apenas em função de n. Estudamos neste trabalho resultados relacionados ao comprimento derivado do anel de Lie Zn-graduado L, onde para o caso de n = 6, vemos também um limite para a classe de nilpotência de um termo da série central inferior de L. Para esse fim, fazemos um estudo introdutório sobre álgebras de Lie e anéis de Lie, como também conceitos preliminares sobre módulos e produto tensorial. Apresentamos também um anel de Lie associado a um grupo, pois muitos problemas em Teoria de Grupos podem ser tratados via métodos lineares para anéis e álgebras de Lie.
3

Sobre Anéis de Lie Admitindo Automorfismos de Ordens Finitas e Álgebras de Lie Quase Nilpotentes. / Sobre Anéis de Lie Admitindo Automorfismos de Ordens Finitas e Álgebras de Lie Quase Nilpotentes. / On lie Rings Admitting Automorphisms of Fintite Order and Lie Algebras Almost Nilpotent / On lie Rings Admitting Automorphisms of Fintite Order and Lie Algebras Almost Nilpotent

MELO, Emerson Ferreira de 28 February 2011 (has links)
Made available in DSpace on 2014-07-29T16:02:17Z (GMT). No. of bitstreams: 1 EMERSON FERREIRA DE MELO.pdf: 459851 bytes, checksum: b6bbc846b2c7808e954127d464c634e5 (MD5) Previous issue date: 2011-02-28 / In this work we present a study on Lie rings and algebras admitting an automorphism of finite order. We emphasize questions on nilpotency. We prove important results of this theory, for example the Higman, Kreknin and Kostrikin s Theorem. Furthermore, let L be a finite dimensional Lie algebra over an algebraically closed field of characteristic 0. Suppose that L admits a nilpotent Lie algebra D with n weights in L, and let m be the dimension of the Fitting null component with respect to D. Then L is almost nilpotent, namely, L contains a nilpotent subalgebra N of {m,n}-bounded codimension and of nbounded nilpotency class. If m = 0, then L is nilpotent of bounded class by a function of n. This theorem was published by E. I. Khukhro and P. Shumyatsky in the paper entitled Lie Algebras with Almost Constant-Free Derivations . / Nesta dissertação apresentamos um estudo sobre anéis e álgebras de Lie admitindo um automorfismo de ordem finita, com ênfase em questões sobre nilpotência. Demonstramos resultados importantes desta teoria, como por exemplo o Teorema de Higman, Kreknin e Kostrikin. Além disso, considere L uma álgebra de Lie de dimensão finita sobre um corpo algebricamente fechado de característica 0. Suponha que L admita uma álgebra de derivações nilpotente D com n pesos em L, e seja m a dimensão da componente nula de Fitting com respeito a D. Então L é quase nilpotente, ou seja, L contém uma subálgebra N de codimensão {m,n}-limitada e classe de nilpotência n-limitada. Se m = 0, então L é nilpotente de classe limitada por uma função de n. Este teorema foi publicado por E. I. Khukhro e P. Shumyatsky num artigo intitulado Lie Algebras with almost constant-free derivations .

Page generated in 0.0687 seconds