Spelling suggestions: "subject:"eie bracket"" "subject:"iie bracket""
1 |
Linear Algebra on the Lie Algebra on Two GeneratorsWebb, Sarah 21 December 2022 (has links)
No description available.
|
2 |
Local controllability of affine distributionsAguilar, CESAR 12 January 2010 (has links)
In this thesis, we develop a feedback-invariant theory of local controllability for affine distributions. We begin by developing an unexplored notion in control theory that we call proper small-time local controllability (PSTLC). The notion of PSTLC is developed for an abstraction of the well-known notion of a control-affine system, which we call an affine system. Associated to every affine system is an affine distribution, an adaptation of the notion of a distribution. Roughly speaking, an affine distribution is PSTLC if the local behaviour of every affine system that locally approximates the affine distribution is locally controllable in the standard sense. We prove that, under a regularity condition, the PSTLC property can be characterized by studying control-affine systems.
The main object that we use to study PSTLC is a cone of high-order tangent vectors, or variations, and these are defined using the vector fields of the affine system. To better understand these variations, we study how they depend on the jets of the vector fields by studying the Taylor expansion of a composition of flows. Some connections are made between labeled rooted trees and the coefficients appearing in the Taylor expansion of a composition of flows. Also, a relation between variations and the formal Campbell-Baker-Hausdorff formula is established.
After deriving some algebraic properties of variations, we define a variational cone for an affine system and relate it to the local controllability problem. We then study the notion of neutralizable variations and give a method for constructing subspaces of variations.
Finally, using the tools developed to study variations, we consider two important classes of systems: driftless and homogeneous systems. For both classes, we are able to characterize the PSTLC property. / Thesis (Ph.D, Mathematics & Statistics) -- Queen's University, 2010-01-11 20:11:45.466
|
3 |
Geometrické postupy v řízení robotických hadů / Geometric approach in robotic snake motion controlVechetová, Jana January 2018 (has links)
Tato diplomová práce se zabývá popisem řiditelnosti specifického robotického hada, který se nazývá trident snake robot. Tento robot je řazen mezi neholonomní systémy. Model je převeden do jazyka diferenciální geometrie a řízen pomocí vektorových polí a operace na nich zavedené (Lieova závorka). Je také uvažována aproximace řídicí distribuce. Dále jsou formulovány pohyby hada ve směru vektorových polí a jejich kombinace, které zajišťují základní pohyby v prostoru (rotace a translace). Tyto pohyby jsou na závěr simulovány v prostředí V-REP.
|
4 |
Frölicherova-Nijenhuisova závorka a její aplikace v geometrii a variačním počtu / The Frölicher-Nijenhuis bracket and its applications in geometry and calculus of variationsŠramková, Kristína January 2018 (has links)
This Master's thesis clarifies the significance of Frölicher-Nijenhuis bracket and its applications in problems of physics. The basic apparatus for these applications is differential geometry on manifolds, tensor calculus and differential forms, which are contained in the first part of the thesis. The second part summarizes the basic theory of calculus of variations on manifolds and its selected applications in the field of physics. The last part of the thesis is devoted to the applications of Frölicher-Nijenhuis bracket in the derivation of Maxwell's equations and to the description of the geometry of ordinary differential equations.
|
5 |
Geometrie neholonomních mechanismů / Nonholonomic mechanisms geometryBartoňová, Ludmila January 2019 (has links)
Tato diplomová práce se zabývá popisem kinematického modelu řízení neholonomního mechanismu, konkrétně robotického hada. Model je zkoumán prostředky diferenciální geometrie. Dále je odvozena jeho nilpotentní aproximace. Lokální říditelnost je zjištěna pomocí dimenze Lieovy algebry generované řídícími vektorovými poli a jejich Lieovými závorkami. V závěru jsou navrženy dva jednoduché řídící algoritmy, jeden pro globální a druhý pro lokální řízení, a poté následuje srovnání jednotlivých modelů.
|
6 |
Geometrická teorie řízení na nilpotentních Lieových grupách / Geometric control theory on nilpotent Lie groupsFrolík, Stanislav January 2019 (has links)
This thesis deals with the theory of geometric control of the trident robot. The thesis describes the basic concepts of differential geometry and control theory, which are subsequently used for describing various mechanisms. Finally, the thesis proposes the management using inferred results.
|
7 |
Lieovy grupy a jejich fyzikální aplikace / Lie groups and their physical applicationsKunz, Daniel January 2020 (has links)
In this thesis I describe construction of Lie group and Lie algebra and its following usage for physical problems. To be able to construct Lie groups and Lie algebras we need define basic terms such as topological manifold, tensor algebra and differential geometry. First part of my thesis is aimed on this topic. In second part I am dealing with construction of Lie groups and algebras. Furthermore, I am showing different properties of given structures. Next I am trying to show, that there exists some connection among Lie groups and Lie algebras. In last part of this thesis is used just for showing how this apparat can be used on physical problems. Best known usage is to find physical symmetries to establish conservation laws, all thanks to famous Noether theorem.
|
Page generated in 0.0598 seconds