Spelling suggestions: "subject:"life anda medical sciences"" "subject:"life ando medical sciences""
11 |
Selecting Biomarkers for Pluripotency and Alzheimer's Disease: The Real Strength of the GA/SVMScheubert, Lena 16 October 2012 (has links)
Pluripotency and Alzheimer's disease are two very different biological states. Even so, they are similar in the lack of knowledge about their underlying molecular mechanisms. Identifying important genes well suited as biomarkers for these two states improves our understanding. We use different feature selection methods for the identification of important genes usable as potential biomarkers.
Beside the identification of biomarkers for these two specific states we are also interested in general algorithms showing good results in biomarker detection. For this reason we compare three feature selection methods with each other. Particularly good results show a rarely noticed wrapper approach of genetic algorithm and support vector machine (GA/SVM). More detailed investigations of the results show the strength of the small gene sets selected by our GA/SVM.
In our work we identify a number of promising biomarker candidates for pluripotency as well as for Alzheimer's disease. We also show that the GA/SVM is well suited for feature selection even if its potential is not yet exhausted.
|
12 |
Functional analysis of cancer-causing FBXW7 mutationsDavis, Hayley Louise January 2012 (has links)
FBXW7 encodes the substrate recognition component of an SCF E3 ubiquitin ligase complex. This complex regulates the degradation of multiple targets, such as Notch1, c-Jun, c-Myc and cyclin E, that function in critical developmental and cancer pathways. FBXW7 mutations are found in cancers of diverse tissue origins, with one of the highest mutation rates in the colorectrum. FBXW7 mutations are typically missense mutations that disrupt the substrate recognition domain at critical arginine propellor-tips. Mutations are often mono-allelic suggesting that FBXW7 is not a typical tumour supressor gene. Despite this, most of the evidence on FBXW7 function to date comes from null systems. Several Fbxw7 -null mouse models have been generated and suffer homozygous embryonic lethality due to disrupted vascular development. Conditional Fbxw7-null mice have been created but do not in general reflect the mutation spectrum found in human tumours. In order to analyse the functional effects of Fbxw7 propellor-tip missense mutations, mice carrying a commonly-occurring Fbxw7 R482Q mutation were generated. This propellor-tip mutation was knocked-in constitutively and whilst heterozygous mice developed normally in utero, they died perinatally due to defective lung development. Cleft palate and eyelid fusion defects were also observed with incomplete penetrance. Fbxw7 substrates were screened in embryonic lungs and significantly elevated protein levels of Klf5 and Tgif1 were observed. The Fbxw7 R482Q mutation was also conditionally knocked-in in the gut. In the heterozygous state, large adenomas in the small intestine were observed at a low multiplicity, in approximately 30% of mice at an age greater than 300 days. Upregulation of Wnt signalling and Ctnnb1 mutations have been identified in a selection of these tumours. Breeding the Fbxw7<sup>R482Q</sup> allele onto Apc-mutant backgrounds led to accelerated morbidity, in which compound R482Q/Apc-mutant mice exhibited polyps of increased number and size. Elevated protein levels of Fbxw7 substrates Klf5 and Tgif1 were observed in adenoma and normal intestinal tissue from these mice. In vitro work using epitope-tagged murine wildtype and propellor-tip mutant Fbxw7 proteins showed that they were capable of dimerising, opening the prospect of investigating a dominant negative mechanism of action. To conclude, an Fbxw7 propellor-tip mutation studied in vivo resulted in both disrupted embryonic development and intestinal tumorigenesis and was distinct from Fbxw7 -null alleles.
|
13 |
The structural basis of the disabling of the actin polymerization machinery by YersiniaLee, Wei Lin January 2013 (has links)
Yersinia pestis is a human pathogen and the causative agent of bubonic plague, responsible for causing three massive pandemics, resulting in hundreds of millions of deaths in the 14th century alone. Yersinia’s virulence stems from its ability to overcome host immune defences by the injection of six Yersinia outer proteins (Yops) into the host cells via its Type III secretion system. One of these Yops, YopO specifically disables the actin polymerization machinery, leading to the crippling of phagocytosis. YopO consists of a GDI domain which sequesters Rac and Rho, and a kinase domain, the activity of which is dependent on host actin. Little is known about the targets of the kinase domain and the mechanism of function of YopO remains incomplete. In this work, YopO was crystallized in complex with actin, revealing that YopO binds to actin on subdomain 4, away from the 'hotspot’ between subdomains 1 and 3 which is involved in binding most actin-binding proteins. The structure reveals how recruitment of YopO-bound actin monomers stalls actin polymerization by steric hindrance. The structure also demonstrates how YopO uses actin for self-activation and suggests that actin is being used by YopO as bait for recruitment into actin machineries. Using SILAC mass spectrometry, actin cytoskeletal machineries within macrophages that recruit YopO are identified and these include, amongst others: VASP family proteins, gelsolin family proteins, formins and WASP. Of these, VASP, EVL, diaphanous1, WASP and gelsolin have been identified to be phosphorylated by YopO and were validated by in vitro phosphorylation. This work demonstrates that YopO uses actin as a scaffold for selection of kinase substrates, enabling targeted phosphorylation of the actin machinery and provides insight into the regulation of the actin cytoskeleton by phosphorylation under non-pathogenic conditions.
|
14 |
Accelerating Genomic Sequence Alignment using High Performance Reconfigurable ComputersMcMahon, Peter 01 January 2008 (has links)
Recongurable computing technology has progressed to a stage where it is now possible to achieve orders of magnitude performance and power eciency gains over conventional computer architectures for a subset of high performance computing applications. In this thesis, we investigate the potential of recongurable computers to accelerate genomic sequence alignment specically for genome sequencing applications.
We present a highly optimized implementation of a parallel sequence alignment algorithm for the Berkeley Emulation Engine (BEE2) recongurable computer, allowing a single BEE2 to align simultaneously hundreds of sequences. For each recongurable processor (FPGA), we demonstrate a 61X speedup versus a state-of-the-art implementation on a modern conventional CPU core, and a 56X improvement in performance-per-Watt. We also show that our implementation is highly scalable and we provide performance results from a cluster implementation using 32 FPGAs.
We conclude that recongurable computers provide an excellent platform on which to run sequence alignment, and that clusters of recongurable computers will be able to cope far more easily with the vast quantities of data produced by new ultra-high-throughput sequencers.
|
15 |
Regeneration of the retina by stem cell transplantation therapySingh, Mandeep S. January 2013 (has links)
One strategy to restore vision in retinitis pigmentosa and related retinal degenerations is by cell replacement. Typically, patients lose vision when the outer retinal photoreceptor layer is lost, and so the therapeutic ideal would be to restore vision at this stage of disease. It is not currently known if a degenerate retina lacking the outer nuclear layer of photoreceptor cells would allow the survival, maturation and reconnection of replacement photoreceptors, as prior studies used hosts with a pre-existing outer nuclear layer at the time of treatment. Here, using a murine model of severe human retinitis pigmentosa at a stage when no host rod cells remain, transplanted rod precursors are shown to reform an anatomically distinct and appropriately polarised outer nuclear layer. A trilaminar nuclear organisation is returned to the rd1 hosts that had only two retinal layers before treatment. The newly introduced rod precursor cells were able to resume their developmental programme in the degenerate host niche to become mature rods with light- sensitive outer segments, and reconnected with host neurons downstream. Visual function, assayed in the same animals before and after transplantation, was restored in animals with zero rod function at baseline. These observations suggest that a cell therapy approach may reconstitute a light-sensitive cell layer de novo and hence repair a structurally damaged visual circuit. Rather than placing discrete photoreceptors amongst pre-existing host outer retinal cells, total photoreceptor layer reconstruction may provide a clinically relevant model to investigate cell-based strategies for retinal repair.
|
16 |
Mechanisms of Type 2 diabetes susceptibilityTravers, Mary E. January 2013 (has links)
Type 2 diabetes (T2D) has a genetic component which is only partially understood. The majority of genetic variance in disease susceptibility is unaccounted for, whilst the precise transcripts and molecular mechanisms through which most risk variants exert their effect is unclear. A complete understanding of T2D susceptibility mechanisms could have benefits in risk prediction, and in drug discovery through the identification of novel therapeutic targets. Work presented in this thesis aims to define relevant transcripts and disease mechanisms at known susceptibility loci, and to identify disease association with classes of genetic variation other than common single nucleotide polymorphisms (SNPs). KCNQ1 contains intronic variants associated with T2D susceptibility and β-cell dysfunction, but only maternally-inherited alleles confer increased disease risk. It maps within an imprinted domain with an established role in congenital and islet-specific growth phenotypes. Using human adult islet and foetal pancreas samples, I refined the transcripts and developmental stage at which T2D susceptibility must be conferred by demonstrating developmentally plastic monoallelic and biallelic expression. I identified a potential risk mechanism through the effect of T2D risk alleles upon DNA methylation. The disease-associated regions identified through genome-wide association (GWA) studies often contain multiple transcripts. I performed mRNA expression profiling of genes within loci associated with raised proinsulin/insulin ratios in human islets and metabolically relevant tissues. Some genes (notably CT62) were not expressed and therefore excluded from consideration for a risk effect, whilst others (for example C2CD4A) were highlighted as good regional candidates due to specific expression in relevant tissues. GWA studies for T2D risk have focused predominantly upon common single nucleotide polymorphisms. As part of a consortium conducing GWA analysis for copy number variation (CNV) and T2D risk, I optimised and compared alternative methods of CNV genotyping, before using this information to validate two signals of disease association. I genotyped three rare single nucleotide variants emerging from an association study with T2D risk based on imputed data, providing an indication of imputation accuracy and more powerful disease association analysis. These data underscore the challenge of translating association signals to causal mechanisms, and of identifying alternative forms of genomic variation which contribute to T2D risk. My work highlights candidates for functional analysis around proinsulin-associated loci, and makes significant progress towards uncovering risk mechanisms at the KCNQ1 locus.
|
17 |
In vitro analysis of viral fusion and receptor binding with a focus on selected arthropod-borne viruses of the families Bunyaviridae and TogaviridaeBitto, David January 2014 (has links)
Emerging arthropod-borne viruses, such as alphaviruses and bunyaviruses, represent a serious threat to human and animal health worldwide, and for most of them, vaccines and specific treatments are unavailable. Viral host cell entry can be divided into several entry checkpoints, and the most important checkpoints for low pH-dependent enveloped viruses, such as bunyaviruses and alphaviruses, include receptor binding at the cell surface and, followed by endocytosis, low pH dependent membrane fusion from within intracellular compartments. A more thorough understanding of the detailed mechanisms allowing the viruses to pass these checkpoints is a pre-requisite for the design of viral entry inhibitors. This thesis reports the in vitro analysis of native alphavirus-receptor interactions, with the help of electron cryo-microscopy and icosahedral reconstruction of virus-recaptor complexes, using the prototypic alphavirus Semliki Forest virus (SFV) and the C-type lectin DC-SIGN. Together with results from collaborative work on SFV glycosylation, this study provides progress in defining the binding sites of DC-SIGN at the surface of SFV. Second, an in vitro system for phlebovirus fusion was developed using standard fluorometry, and has been characterized with the help of electron cryo-microscopy. It was discovered that negatively charged phospholipids with a conical shape, including the late endosomal phospholipid BMP, allow efficient phlebovirus fusion in vitro, thereby providing a possible rationale for phlebovirus fusion in late endosomes. Furthermore, electron cryo-microscopy of phlebovirus-liposome complexes allowed the capture of early stage fusion intermediates and laid the basis for possible future higher resolution studies of these fusion intermediates.
|
18 |
Cellular models for characterisation of MINA53, a 2-oxoglutarate-dependent dioxygenaseZayer, Adam January 2012 (has links)
2-0xoglutarate/Fe(II)-dependent dioxygenases (ZOG Oxygenases) are a relatively poorly characterised enzyme family that hydroxylate biological macromolecules to regulate a variety of essential cellular processes in mammals, including; chromatin remodeling, extra-cellular matrix formation and oxygen sensing. The work in this th esis focuses on a ZOG Oxygenase termed Myc-Induced Nuclear Antigen (MINAS3). This enzyme has been implicated in ribosome biogenesis and cell proliferation, and observed overexpressed in several tumour types, yet the identity afits substrate(s) and their role in cancer is unknown. The aims of the resea rch that has resulted in this thesis were to; (i) develop a cell model of MINAS3 enzyme activity, (ii) apply this model to study the role of MINAS3 activity in cell transformation and cancer, and (iii) discover novel cellular processes regulated by MINA53 activity. As such, I have created an isogenic cell model consisting of K-Ras-transformed MINAS3 knockout mouse embryonic fibroblasts (MEFs) reconstituted with either wildtype or enzyme-inactive MINAS3. Using this model I have shown that MINAS3 activity maintains normal levels of the large ribosomal subunit (60S), and suppresses anchorage-independent growth, autophagy and gene expression. These observations suggest the existence and involvement of one or more substrates. Indeed, proteomic and biochemical analyses in collaboration with the Schofield laboratory (Chemistry, Oxford) confirmed the identity of a MINA53 substrate, the 60S ribosomal protein Rp127a. Together we have shown that Rpl27a is abundantly hydroxylated, and that MINA53 is a histidinyJ hydroxylase; this represents the first discovery of a ribosomal oxygenase. The model developed here did not support a positive role for MINA53 in the transformation of MEFs. Rather it suggested that MINA53 can suppress transformation in some contexts, This prompted a wider investigation that demonstrated underexpression of MINA53 in several tumour types, and the presence of inactivating mutations in breast. ovarian and colon cancer. This thesis provides data supporting further research to understand the role of Rpl27a hydroxylation in the regulation of 60S biogenesis, autophagy and cancer. 2
|
19 |
The genetics of amyotrophic lateral sclerosisSchymick, Jennifer January 2009 (has links)
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterised clinically by rapidly progressive paralysis leading ultimately to death from respiratory failure. There is no cure for ALS and no definitive explanation for the onset and rapid progression of motor neuron degeneration. Genetics is a known risk factor for a portion of familial cases. However, the role of genetics in the commoner sporadic form of the disease is poorly understood, although numerous genes have been implicated. The primary aim of this thesis project is to uncover the genetic causes that underlie ALS. To accomplish this goal, the main focus of this thesis is to perform genome-wide association analysis of sporadic ALS using high density SNP arrays. This thesis describes the first and the largest genome-wide association studies of ALS to date. Results demonstrate that there is no single large effect susceptibility variant underlying a large proportion of ALS, such as ApoE in Alzheimer’s disease. However, the genotyping data has been made publically available and the digital nature of this data means that it is a resource that can grow with future studies. Beyond genome-wide association, this thesis describes work using linkage, haplotype and sequence analysis to investigate the genetic overlap between ALS and frontotemporal dementia. Lastly, this thesis presents a novel method for linkage analysis using high throughput SNP arrays. Ultimately, it is hoped that by uncovering the genes that cause ALS, such knowledge will shed light on the pathogenic mechanisms underlying motor neuron degeneration and potentially lead to new rational therapies effective in slowing or even halting disease progression.
|
20 |
Iminosugars as dengue virus therapeutics : molecular mechanisms of action of a drug entering clinical trialsSayce, Andrew Cameron January 2014 (has links)
Iminosugars are a class of small molecules defined by substitution of a sugar’s ring oxygen with nitrogen. Various chemical modifications of these basic structures (e.g. alkyl chain addition off of the ring nitrogen) have been developed during the last several decades. These molecules have been considered as therapeutics for a number of pathologies including viral infection, congenital disorders of glycosylation (of both glycoproteins and glycolipids), and diabetes. This thesis focuses on the application of a small subset of iminosugars, known as deoxynojirimycin derivatives, as therapeutics against dengue virus induced pathology. Dengue virus infection predominates in tropical climates, but autochthonous infection has recently emerged in areas of both southern Europe and the southern United States. With 390 million people infected annually, dengue is the most prevalent arthropod-borne viral infection worldwide, and the possibility of severe pathology including haemorrhage, shock, and/or death, necessitates development of effective antiviral therapies. Although the molecular mechanisms responsible for progression to severe dengue disease are not completely understood, there is considerable evidence for the role of both the innate and the adaptive immune responses in development of life-threatening complications. Excessive activation of the innate immune response, a phenomenon known as cytokine storm, has been hypothesised to explain development of symptoms related to vascular permeability, whereas the adaptive immune response has been implicated in severe disease through two hypotheses – the antibody dependent enhancement and original antigenic sin hypotheses. The evidence regarding each of these potential mechanisms of severe pathology is discussed throughout this thesis principally with respect to how iminosugar treatment could alter any detrimental effects of the immune response to dengue virus infection. The principal aim of this thesis is to consider the potential of deoxynojirimycin iminosugars as antiviral therapeutics in dengue infection with a focus on how these molecules exert their antiviral effects in primary human cells. I first consider the contributions of glycoprotein inhibition and glycolipid inhibition on production of infectious dengue virus. These experiments suggest that inhibition of glycoprotein folding is responsible for inhibition of infectious dengue virus production. I next consider the impact of treatment of a promising clinical candidate iminosugar, N9-methoxynonyl-deoxynojirimycin (MON-DNJ), on the primary human macrophage transcriptome. In uninfected macrophages as well as macrophages infected with dengue virus or treated with lipopolysaccharide to model bacterial sepsis, iminosugar treatment results in activation of the unfolded protein response and inhibition of several elements of the inflammatory response including signalling by the cytokines IFN-γ and TNF-α, and the inflammatory cascade mediated by NF-κB. Activation of the unfolded protein response as a result of treatment with MON-DNJ can be confirmed by analysis of phosphorylated (activated) NFE2L2, a transcription factor that functions principally to control oxidative stress in response to ER stress signals. Modulation of the inflammatory response of macrophages to dengue infection and bacterial sepsis is confirmed by analysis of secreted cytokines. As predicted by my transcriptomic experiments, levels of TNF-α and IFN-γ produced in response to dengue or lipopolysaccharide are reduced by treatment with MON-DNJ. Finally, I attempted to extend these observations to an animal model of dengue infection with a particular focus on TNF receptor and ligand superfamily members. Unfortunately, heterogeneity of cells types from tissue samples as well as limitations of the animal model complicate interpretation of these findings. Nevertheless, this thesis demonstrates that MON-DNJ is an effective dengue antiviral therapeutic and that this therapeutic activity may be related to both reduction of infectious virus as a consequence of inhibition of glycoprotein processing and as a result of changes to the host’s response to the pathogen. These results have been used in part to justify recently initiated clinical trials of MON-DNJ as a dengue antiviral therapy.
|
Page generated in 0.1111 seconds