• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 9
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 82
  • 82
  • 44
  • 23
  • 15
  • 15
  • 14
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fire Response of Loaded Composite Structures - Experiments and Modeling

Burdette, Jason A. 01 May 2002 (has links)
In this work, the thermo-mechanical response and failure of loaded, fire-exposed composite structures was studied. Unique experimental equipment and procedures were developed and experiments were performed to assess the effects of mechanical loading and fire exposure on the service life of composite beams. A series of analytical models was assembled to describe the fire growth and structural response processes for the system used in the experiments. This series of models consists of a fire model (to predict the heat flux to the fire-exposed beam), a thermal response model (to calculate the temperature distribution within the beam due to this heat flux), a stiffness-temperature model (to calculate the loss in stiffness at elevated temperatures), a mechanical response model (to compute the strain distribution within the loaded beam), and a material failure model (to calculate the strain at which the beam is expected to fail). Each of these models is independently validated by comparing predictions with experimental results. The models are then used to predict the times-to-failure for beams over a range of fire and loading conditions. The predicted failure times agree fairly well with experimental results, but it is expected that the agreement could be improved with improvements to the first model in the series - the fire model. / Master of Science
2

Robust Model for Fatigue Life Estimation from Monotonic Properties Data for Steels

Hartman, Derek 06 November 2014 (has links)
Determining the fatigue properties (Manson-Coffin and Ramberg-Osgood parameters) for a steel material requires time consuming and expensive testing. In the early stages of a design process, it is not feasible to perform this testing. To help solve this problem numerous researchers have developed estimation methods to estimate the Manson-Coffin parameters from monotonic properties data. Additionally, other researchers have compared the results from these various estimation methods for large material classifications. However, a comprehensive comparison of these estimation methods has not been made for steels in different heat treatment states. More accurate results for the best estimation method can be made with smaller classifications, which have more consistent properties. In this research, best estimation methods are determined for six steel heat treatments. In addition to looking at steel heat treatment classifications, the estimation of the Ramberg-Osgood parameters is also examined through the compatibility conditions. Without them, the approach of estimating the fatigue properties using the estimation methods would not be practically useful. Finally, in the comparison of the estimation methods, an appropriate statistical comparison methodology is utilized; multiple contrasts comparison. This methodology is implemented into the comparison of the different estimation methods, by comparing the estimated lives and the experimental lives as a regression so that the entire life range can be considered. The estimation methods can also be utilized to get estimates of the variability of the fatigue properties given the variability of the monotonic properties data, since there is a functional relationship developed between the two sets of material properties. This variability is necessary for a stochastic design process, in order to obtain a more optimally designed component or structure. Overall the estimation methods have a number of practical applications within a fatigue design process. Their use and implementation needs to be supplemented by the appropriate knowledge of their limitations and for what classifications they give the best results. An expert system is developed to summarize this knowledge to assist an engineer. This research aims to provide this knowledge and expands their use to account for variability in fatigue properties for stochastic analysis.
3

Experimental and Numerical Studies of Board-level Electronic Packages Subjected to Drop and Thermal Cycling Tests

Le, Ye-sung 07 August 2007 (has links)
Experimental and numerical analyses were both adopted in the thesis. First, the BGA with three different solder ball components and pads, were investigated and their strength was affected by drop tests and thermal cycling test. Then the concept of numerical simulation to do the follow-up analysis was adopted. the relationships of stress, strain, and creep strain energy density were found. The lead-free solder ball has better resistance to the drop test with lower silver content; on the contrary, it has better properties due to thermal cycling tests with higher silver content. In the drop test, the failure of solder ball were found obviously in the packages that near four corner of the test board, and concentrated in the diagonal screw holes. The failure of solder ball was distributed over the peripheral of the package in the middle cross section of test board. Comparing the different position of 15 packages due to drop test, the amount of failed solder balls showed that the package positions U3, U8, U13 was obviously fractured, and the situation of fracture was relatively slight in the positions of U1, U5, U6, U7, U9, U10, U11, U15. In the fatigue life prediction of thermal cycling test, the simplified model of package in 45¢X direction was mostly close to the experimental data. After the except ion of the solder ball with failure mode A1, the major failure mode in drop test was mode B3. But the mode C was the majority of thermal cycling test. The structure and intensity of SMD play an important role on above experiments; the better choice of SMD can reduce the rate of failure mode A1, and improve the accuracy of the experiment.
4

Health monitoring of IGBTs in automotive power converter systems

James, Peter Andrew January 2013 (has links)
The use of IGBT power modules in the automotive industry is becoming increasingly common as manufacturers develop more hybrid and all electric vehicles. In an industry such as this, the reliability of a component is critical and vehicle manufacturers have conducted much research into diagnostic and prognostic systems for internal combustion engines that run in real time on the vehicle to determine when components will fail. Power electronic components do not have similar prognostics available. The traditional use of power electronic modules has been in applications where their life or duty cycle is well defined, and accelerated life tests are carried out to determine a mean time to failure. This type of prognostics is not appropriate for the automotive industry because the operating cycle of the vehicle varies greatly, both in driving style, duty cycle and environment. A new type of prognostics is therefore required which will calculate the life remaining in the power module in real time as the device is being used.Because of the high robustness of IGBT power modules, testing for time to failure can be a very lengthy process. A novel procedure and test rig based on Peltier effect thermoelectric coolers was developed, which can automatically temperature cycle IGBT power modules in a very short time and determine their life expectancy, all within their operating specifications. This was tested using several power modules. The failure modes of IGBT power modules are also investigated with a view to developing a failure prediction algorithm. The causes of failure are analysed and a prognostics algorithm is proposed. This prognostics algorithm uses thermal cycle history as a means to predict the life consumed for the power module. The data obtained by the accelerated life tests is used to calculate the coefficients for the prognostic algorithm. A simulation of a vehicle drive cycle is used to show how the prognostics algorithm can be used, and a value indicating the extent to which the IGBT power module has aged is calculated. It is also proved that by intelligently controlling the heat flowing from the heat sink on which the power module is mounted, the life of the IGBT power module can be increased by approximately three times.Hardware and software were developed to implement the health monitoring algorithm. Measurement and control circuits were designed, built and tested together with software that processes the input data, records the thermal cycle history of the IGBT power modules and calculates a value of age for the IGBT power modules in real time. This was tested on several modules to prove the validity of the algorithm.The new algorithms and methodology developed could enable vehicle manufacturers to predict the failure of power modules in hybrid and all electric vehicles. This technology could also benefit other industries such as the renewables (eg wind turbines) and aerospace, where the industry is moving towards all electric aircraft.
5

Contact stress analysis and fatigue life prediction for a cam-roller follower system

Girardin, Benoit 05 September 2009 (has links)
An analytical treatment of the fatigue performance of a cam-roller followler system as influenced by residual stresses induced by grinding, is developed. An approach based on an extended Hertzian analysis is used to determine the 3-D contact stress fields, which are then combined by elastic superposition with the residual stress fields. These residual stresses were measured previously by the x-ray diffraction technique and represent a range of grinding protocols from mild to abusive. The maximum cyclic component, generally occurring subsurface, is then identified in terms of an effective stress amplitude and mean which are used with a fatigue damage model to predict fatigue crack initiation. Results, pending experimental confirmation, appear reasonable and provide a useful basis for optimizing cam performance in terms of manufacturing and design parameters. / Master of Science
6

Buried Pipe Life Prediction in Sewage Type Environments

Bodin, Jean-Matthieu Marie Jacques Sebastien 21 August 1998 (has links)
In this study, we develop a method of life prediction of buried pipe using the concepts of a characteristic damage state and damage accumulation. A stress analysis corresponding to the different types of load during service with environmental effects, a moisture diffusion model, and a lifetime prediction analysis combining the above models has been constructed. The model uses an elasticity solution for axial-symmetric loading in the case of pressurized pipe, and an approximate non-linear solution for transverse loading due to soil pressure in the case of buried pipe. The axial-symmetric stress analysis has been constructed taking into account the moisture content and the temperature of each ply of the laminate. The moisture diffusion model takes into account the geometry of the laminate, the different diffusivity coefficients in each ply, and also the geometric changes due to ply failure. The failure mode and material behavior of the pipe has been investigated and identified according to Owens Corning data. Thus, the code that has been developed allows one to predict the time to failure of Owens Corning industrial pipes under any time-dependent profile of environmental and loading conditions. / Master of Science
7

Creep-Fatigue Damage Investigation and Modeling of Alloy 617 at High Temperatures

January 2017 (has links)
abstract: The Very High Temperature Reactor (VHTR) is one of six conceptual designs proposed for Generation IV nuclear reactors. Alloy 617, a solid solution strengthened Ni-base superalloy, is currently the primary candidate material for the tubing of the Intermediate Heat Exchanger (IHX) in the VHTR design. Steady-state operation of the nuclear power plant at elevated temperatures leads to creep deformation, whereas loading transients including startup and shutdown generate fatigue. A detailed understanding of the creep-fatigue interaction in Alloy 617 is necessary before it can be considered as a material for nuclear construction in ASME Boiler and Pressure Vessel Code. Current design codes for components undergoing creep-fatigue interaction at elevated temperatures require creep-fatigue testing data covering the entire range from fatigue-dominant to creep-dominant loading. Classical strain-controlled tests, which produce stress relaxation during the hold period, show a saturation in cycle life with increasing hold periods due to the rapid stress-relaxation of Alloy 617 at high temperatures. Therefore, applying longer hold time in these tests cannot generate creep-dominated failure. In this study, uniaxial isothermal creep-fatigue tests with non-traditional loading waveforms were designed and performed at 850 and 950°C, with an objective of generating test data in the creep-dominant regime. The new loading waveforms are hybrid strain-controlled and force-controlled testing which avoid stress relaxation during the creep hold. The experimental data showed varying proportions of creep and fatigue damage, and provided evidence for the inadequacy of the widely-used time fraction rule for estimating creep damage under creep-fatigue conditions. Micro-scale damage features in failed test specimens, such as fatigue cracks and creep voids, were quantified using a Scanning Electron Microscope (SEM) to find a correlation between creep and fatigue damage. Quantitative statistical imaging analysis showed that the microstructural damage features (cracks and voids) are correlated with a new mechanical driving force parameter. The results from this image-based damage analysis were used to develop a phenomenological life-prediction methodology called the effective time fraction approach. Finally, the constitutive creep-fatigue response of the material at 950°C was modeled using a unified viscoplastic model coupled with a damage accumulation model. The simulation results were used to validate an energy-based constitutive life-prediction model, as a mechanistic model for potential component and structure level creep-fatigue analysis. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2017
8

Simulation of Enviro-mechanical Durability for Life Prediction of E-Glass/Vinyl Ester Composites using a Bridge Service Environment

Jungkuist, David Alan 30 May 2001 (has links)
In order for composites to become an accepted material for infrastructure application, life prediction and durability must be understood. The majority of studies have examined the strength and fatigue response of composites under hot and/or moist conditions. Various researchers have also studied life prediction methods for composite materials under fatigue, primarily for high performance applications. Little work has been done to study durability under combined service conditions for composites used in civil infrastructure applications. This thesis focuses on the development of a life prediction model for use with fiber reinforced polymer composites in bridge service environments. The Tom's Creek Bridge of Blacksburg, VA is used as a guiding case study. First, the tensile properties of the composite were studied as a function of temperature and moisture. Damage accumulation was studied as a function of cyclic loading and temperature cycles. The enviro-mechanical conditions, including moisture, temperature and fatigue loading, were then used in a computer simulation to predict the life of a vinyl ester/glass composite under an approximate bridge service environment. Finally, a laboratory simulation was conducted that approximates the temperature and humidity that is seen at the Tom's Creek Bridge, but in an accelerated time frame. A multi-stress fatigue pattern, mimicking cars and trucks passing over the bridge, was used. One year of conditions was accelerated to approximately six hours and thirty-three minutes using a servo-hydraulic test frame and environmental chamber. The final results showed that life prediction methodology conservatively predicted the lifetime of a vinyl ester/glass composite under the enviro-mechanical conditions. The damage of the composite was predominately driven by cyclic loading. The environmental conditions of moisture and temperature had only a small affect on the lifetime of the composite. This lack of environmental sensitivity is largely due to the durability of the resin system. / Master of Science
9

Fatigue Analysis of 3D Printed 15-5 PH Stainless Steel - A Combined Numerical and Experimental Study

Padmanabhan, Anudeep 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Additive manufacturing (AM) or 3D printing has gained significant advancement in recent years. However the potential of 3D printed metals still has not been fully explored. A main reason is the lack of accurate knowledge of the load capacity of 3D printed metals, such as fatigue behavior under cyclic load conditions, which is still poorly understood as compared with the conventional wrought counterpart. The goal of the thesis is to advance the knowledge of fatigue behavior of 15-5 PH stainless steel manufactured through laser powder bed fusion process. To achieve the goal, a combined numerical and experimental study is carried out. First, using a rotary fatigue testing experiment, the fatigue life of the 15-5 PH stainless steel is measured. The strain life curve shows that the numbers of the reversals to failure increase from 13,403 to 46,760 as the applied strain magnitudes decrease from 0.214\% from 0.132\%, respectively. The micro-structure analysis shows that predominantly brittle fracture is presented on the fractured surface. Second, a finite element model based on cyclic plasticity including the damage model is developed to predict the fatigue life. The model is calibrated with two cases: one is the fatigue life of 3D printed 17-4 stainless steel under constant amplitude strain load using the direct cyclic method, and the other one is the cyclic behavior of Alloy 617 under multi-amplitude strain loads using the static analysis method. Both validation models show a good correlation with the literature experimental data. Finally, after the validation, the finite element model is applied to the 15-5 PH stainless steel. Using the direct cyclic method, the model predicts the fatigue life of 15-5 PH stainless steel under constant amplitude strain. The extension of the prediction curve matches well with the previously measured experimental results, following the combined Coffin-Manson Basquin Law. Under multi-amplitude strain, the kinematic hardening evolution parameter is incorporated into the model. The model is capable to capture the stresses at varied strain amplitudes. Higher stresses are predicted when strain amplitudes are increased. The model presented in the work can be used to design reliable 3D printed metals under cyclic loading conditions.
10

Impact of duty cycle on wear progression in variable-displacement vane oil pumps

Doikin, Aleksandr, Habib Zadeh, Esmaeil, Campean, Felician, Proest, Martin, Brown, A., Sherratt, A. 02 November 2018 (has links)
Yes / Variable-displacement vane oil pumps are increasingly employed in automotive powertrains for their efficiency benefits through reduced losses. However, confirming long life reliability of a new commodity based on limited data available from product development tests and early field experience is a significant challenge, which is addressed by the work presented in this paper. The approach presented combines physical examination of pumps returned from tests, with analysis of damage factors for pump wear progression, and an analysis of functional parameters for the powertrain system focused on the cause effect linkages across the systems hierarchy. The metrology results from physical measurements of used parts provide useful insights for the wear progression and the expected service performance of the pump. The paper also expands towards a data driven approach based on ECU data analysis that could provide a pathway towards the development of online health monitoring and diagnostics of the oil pumps. / Research project: “Intelligent Personalised Powertrain Health Care”, funded by Jaguar Land Rover.

Page generated in 0.1202 seconds