• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coordination chemistry and catalysis at iron : from non-innocent ligands to CO2 transformation / Chimie de coordination et catalyse au fer : ligands non-innocents et transformation et du CO2

Jin, Guanghua 24 September 2015 (has links)
L'utilisation du fer en chimie de coordination et en catalyse suscite un intérêt croissant de par son abondance et sa faible toxicité. Dans le premier chapitre, une étude bibliographique présente deux domaines d'applications du fer : i) l'utilisation de complexes de fer comportant des ligands " non innocent " pour différentes applications en catalyse, et ii) l'utilisation de complexes de fer pour des transformations stœchiométriques et catalytiques du CO2. Dans le chapitre 2, la synthèse et la caractérisation de complexes de fer portant un ligand coopératif non-innocent sont présentées. Le composé hautement réactif [Fe(N(TMS)2)2] a été choisi comme précurseur pour l'étude de la coordination du ligand bis(picolyl)phosphine dans des conditions douces. Une famille de complexes mono- et di-nucléaires de fer a été isolée et le comportement " non-innocent " du ligand a été mis en évidence. La combinaison de plusieurs techniques : diffraction des rayons X, RMN (en solution et à l'état solide), RPE, Mössbauer et spectroscopie infrarouge a permis de complètement caractériser à la fois les complexes diamagnétiques mais aussi paramagnétiques. Le chapitre 3 se concentre sur la transformation de CO2 par un système catalytique efficace au fer. Les complexes dihydrure de fer [Fe(H)2(diphosphine)2] catalysent la fonctionnalisation réductrice du CO2 dans des conditions douces. Dans ce système, la première étape concerne la réduction catalytique du CO2 par des hydroboranes donnant un composé bis(boryl)acetal. Via une stratégie " un pot, deux étapes " l'intermédiaire acétal est ensuite utilisé comme source de méthylène et est fonctionnalisé pour donner une série de composés organiques contenant non seulement des liaisons C-N mais aussi des liaisons C-O, C-S et C-C avec de bons à très bons rendements. / There is an increasing interest in the use of iron in coordination chemistry and catalysis because it is an earth abundant metal which exhibits a low toxicity. The first chapter is a bibliographic study concerning two areas of applications for iron: the combination of iron with non-innocent ligands leading to highly active catalysts, and the use of iron complexes for CO2 transformations at the stoichiometric and catalytic levels. In chapter 2, the synthesis and characterization of iron complexes bearing a cooperative non-innocent ligand are presented. The highly reactive compound [Fe(N(TMS)2)2] has been chosen as a precursor for the study of the coordination of the bis(picolyl)phosphine ligand under mild conditions. As a result, a family of mono- and di-meric iron complexes has been isolated and the non-innocent behavior of the ligand has been observed. The combination of several techniques: X-ray diffraction, NMR (in solution and in the solid state), EPR, Mössbauer and infrared spectroscopy allows to clearly characterize both diamagnetic and paramagnetic complexes. Chapter 3 focuses on the transformation of CO2 catalyzed by an efficient iron-based system. In this system, iron hydride complexes [Fe(H)2(diphosphine)2] have been chosen to catalyze the reductive functionalization of CO2 through a one-pot two steps strategy under mild conditions. The first step concerns the iron-catalyzed reduction of CO2 by hydroboranes affording a bis(boryl)acetal compound. This intermediate is then used as a source of methylene in functionalization reactions, leading to a series of organic compounds containing not only C-N but also C-O, C-S, and C-C bonds in good yields.
2

Formation and Characterization of Reduced Metal Complexes in the Gas Phase / Formation et caractérisation de complexes métalliques réduits en phase gazeuse

Katari, Madanakrishna 24 November 2016 (has links)
La caractérisation complète d’intermédiaires réactionnels intervenants dans des procédés de catalyse homogène est une tâche ardue en raison de leur réactivité et de leur faible concentration. Ceci est particulièrement vrai pour les espèces radicalaires telles que les complexes organométalliques réduits, qui sont des intermédiaires en photocatalyse ou lorsque ces complexes possèdent des ligands non-innocents. Par conséquent, leur structure électronique est encore mal comprise, sachant que l'électron ajouté peut être situé sur différents sites de la molécule.Dans ce contexte, nous avons développé une méthode d'analyse pour étudier en phase gazeuse des complexes organométalliques radicalaires. Des complexes organométalliques multichargés du zinc et du ruthénium avec des ligands bidentes de type bipyridine ou tridente de type bis(imino)pyridine ont d’abord été obtenus et isolés en phase gazeuse. Ils sont ensuite réduits avec les méthodes d’activation par un électron spécifiques à la spectrométrie de masse, la dissociation par capture ou transfert d’électron (ECD/ETD), permettant de former des espèces métalliques radicalaires monochargées. Celles-ci sont enfin isolés et leur spectre infrarouge est obtenu à l’aide de la spectroscopie d’action basée sur la dissociation induite par l’absorption de plusieurs photons dans l’infrarouge (IRMPD). Les méthodes DFT fournissent un complément pour modéliser la structure électronique et le spectre IR de ces espèces.Les challenges à relever pour développer ce nouvel outil d'analyse étaient de deux ordres. Tout d'abord, nous devions être en mesure d'obtenir les complexes souhaités en phase gazeuse. Ceci nous a conduit à examiner de multiples paramètres, tels que la nature des ligands ou l’énergie interne déposée lors de l’étape de réduction. Le deuxième défi portait sur l'utilisation des méthodes de modélisation. Nous avons montré l’absence de fiabilité des méthodes standards de modélisation pour décrire à la fois la structure électronique et le spectre infrarouge des complexes réduits. Les données expérimentales obtenues durant ce travail ont donc été utilisées comme références pour identifier les fonctionnelles DFT les plus appropriées pour l’étude de ces complexes radicalaires. / The complete characterization of reaction intermediates in homogeneous catalytic processes is often a difficult task owing to their reactivity and low concentration. This is particularly true for radical species such as reduced organometallic complexes, which are intermediates in photocatalysis, or when these complexes included non-innocent ligands. Consequently, their electronic structure in the ground state is still poorly understood, knowing that the added electron can be located on different sites of the molecule.In this contect, we developed an analytical method to study radical organometallic complexes in the gas phase. We started with formation of suitable multi-charged zinc organometallic complexes in the gas phase from mixture of zinc metal cation and bipyridine-type bidentate or bis(imino)pyridine tridentate ligands. Multicharged ruthenium complexes with similar ligands have also been studied. Under ideal circumstances these complexes were isolated and reduced in the gas phase to form monocationic metal species. Electron activated methods such as electron capture dissociation (ECD) and electron transferred dissociation (ETD) techniques, available in FT-ICR mass spectrometers, have been used to that end. The resulting Zn and Ru radical cation complexes are then isolated in the gas phase and probed via infrared multi photon dissociation (IRMPD) action spectroscopy. In support, DFT theoretical calculations were performed to model their electronic structure and IR spectra.Two main issues were faced during the development of this new analytical tool. First, we had to be able to obtain the desired complexes in the gas phase. This has lead to monitor various parameters, such as the nature of the ligands or the internal energy provided by the reduction step. The second challenge dealt with the use of modeling methods. We have shown that standard modelling tools lack the accuracy to predict both electronic structure and spectral signatures of reduced complexes. The experimental data gathered in this work have therefore been used as benchmarks for the identification of DFT functionals that are most appropriate for the study of these radical complexes.

Page generated in 0.0524 seconds