• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Houston LDAR II network: design, operation, and performance analysis

Ely, Brandon Lee 10 October 2008 (has links)
The Houston LDAR II network is an array of twelve VHF time-of-arrival (TOA) sensors operated by Texas A&M University. The goals of the network are to conduct indepth studies of thunderstorm electrification and provide timely lightning threats to the Houston area. Before analyses are conducted using data from the Houston LDAR network, it is necessary to understand the LDAR networkâ s performance and limitations, such as the LDAR source detection efficiency, network range, and location accuracy. Initial results from the 31 October 2005 Mesoscale Convective System (MCS) timing error analysis revealed an RMS timing error for the Houston LDAR network of 90 ns for 6 sensor solutions. This gives a three-dimensional location accuracy of 1 km at a distance of 150 km and 100 m over the center of the network. Reanalysis with updated sensor positions decreased the RMS timing error to 75 ns. This decrease in RMS timing error increased the median three-dimensional location accuracy by ~100 m at a 100 km range. The network has been operated at both 70 MHz and 40 MHz. Model results of detection efficiency suggest that the change to 40 MHz yields an increase of 9 - 10 dB in network sensitivity. Analysis of VHF source power distributions shows a similar shift from that expected from the model. These results show that the 40 MHz LDAR network detects ~3.3 times more VHF sources than the 70 MHz network. The analysis of the usable network range for research purposes is currently set by rough guidelines of location accuracy and detection efficiency. For location accuracy, a 1 km limit allows storm analysis out to a range of more than 150 km. For the detection efficiency analysis, results based on source power distributions suggest a gradual fall off with range. Examining the change in VHF source density by range reveals different results. VHF source density remained fairly constant out to a range of 100 km at which point a significant fall off was observed. Based on these results the usable network range for the Houston network is 100 km.
2

The Houston Lightning Mapping Array: Network Installation and Preliminary Analysis

Cullen, Matthew Ryan 16 December 2013 (has links)
The Houston Lightning Mapping Array (LMA) is a lightning detection network providing total lightning mapping for the Houston metropolitan area and southeast Texas. The network is comprised of twelve Very High Frequency (VHF) time-of-arrival total lightning mapping sensors built by New Mexico Institute of Mining and Technology and purchased by Texas A&M University. The sensors, installed in April 2012, are of the latest, modular design and built to be independent stations that utilize a solar panel for electricity and cellular data modems for communication. Each sensor detects the time of arrival of a VHF impulse emitted as part of the electrical breakdown and lightning propagation process. Data from each sensor are processed on a central LMA server to provide three-dimensional mapping of these impulses, also called LMA sources. This processing facilitates the analysis of variations in thunderstorm structure and the associated changes in both space and time. The primary objectives for the installation of the Houston LMA network are twofold: first, to provide a dataset enabling research into thunderstorm electrification in the context of a coastal, urban, polluted environment; and second, to enable improvements in operational forecasting and public safety by providing total lightning data to partners including the National Weather Service (NWS). A workflow was established to create and share real-time data to these partners, while simultaneously maintaining a full, research-quality dataset. Data are retrieved from the field sensors and backed up to a central LMA server for processing and storage. Archived network data are available from July 2012 through the present. The network measures 150 km from north to south, with stations in College Station and Galveston complementing the ten sites surrounding downtown Houston. This extends the region constrained by the network beyond the immediate metropolitan Houston area, resulting in increased accuracy in locating sources further from the network center. Based on initial analyses, the effective range of the Houston LMA is 75 km for three-dimensional mapping and approximately 250 km for two-dimension mapping.
3

Comparing lightning polarity and cloud microphysical properties over regions of high ground flash density in South Africa

Simpson, Lee-ann January 2013 (has links)
Positive lightning flashes are known to be more intense and cause more damage than negative flashes, although positive flashes only occur about 10% of the time. This study expounds on cloud microphysical aspects of thunderstorms and investigates the occurrence, timing and location of ice particles within thunderstorms and correlates this to the occurrence of positive cloud-to-ground lightning events. Satellite data obtained from the Meteosat Second Generation (MSG) satellite, were used to: 1) depict Cloud Top Temperatures (CTT) by considering Infra Red (IR) radiation with a wave length of 10.8μm, 2) compare results from the CTT with the Brightness Temperature Difference (BTD) calculated by subtracting IR10.8μm from IR8.7μm, 3) after the cloud particle phase was determined from the abovementioned comparison, the sum of cloud-to-ground lightning strokes over a 1-hour period around the time of a reported lightning fatality was compared with cloud microphysical properties and then 4) these results were further compared with the lightning polarity obtained from the South African Weather Service (SAWS) Lightning Detection Network (LDN) data set. Four case studies were identified to investigate from the many available case study dates. These four cases occurred on 3 separate days namely: 1)22 November 2007, iii 2) 10 February 2009 and 3) 29 October 2009. There were two fatal events reported on 22 November 2007 and therefore two cases studies were compiled for this one date. On 10 February 2009 over 250 insurance damage claims were honoured but no fatality was reported. The three case studies mentioned above were classified as primary case studies. The 29 October 2009 case was classified as a secondary, more generalized case which was chosen in order to test whether the results gained from the first three cases were indeed noteworthy. Results gathered from two of the three primary case studies showed that the fatalities occurred when the most intense part of the thunderstorm was to the east of the location where the lightning struck the victims, although actual storm properties were not considered as being particularly severe. The lightning data for the primary case studies showed that the percentage of cloud-to-ground lightning was within 10% of the total number of strokes recorded for 22 November 2007, and above 10% for 10 February 2009. In the one secondary case study of 29 October 2009 the percentage of positive lightning was only between 2% and 4% of the total number of strokes recorded, which was significantly lower than in the three primary cases. A significant difference in cloud microphysics between the primary and secondary cases was the possible occurrence of super-cooled liquid water found in Cumulonimbus (CB) clouds in the secondary case. This could have been a determining factor for the difference in percentage of positive lightning between the primary and secondary case studies. / Dissertation (MSc)--University of Pretoria, 2013. / gm2014 / Geography, Geoinformatics and Meteorology / unrestricted
4

Utveckling av webbaserat blixtdetekteringssystem / Development of a web-based lightning detection system

Al Sayfi, Anhar, Kufa, Max January 2016 (has links)
In this paper we suggest a lightning detection system capable of warning a local populous of incoming lightning weather using a combination of the AS3935 sensor and the one-board-computer Raspberry Pi, in an attempt to design a product that is cheap, mobile and easy to use. The product is composed of a sensor net that registers and reports lightnings on a webserver. The server is reachable as a normal website based on the LAMP method. The project reached a stadium which should satisfy a “proof of concept”, however, the product is far from complete, as it lacks the necessary algorithms needed for proper data computation. The current system only uses Raspberry pi, but it is theoretically possible to introduce other hardware to the system, but the current developed product does not support such functionality. / I den här rapporten föreslår vi ett blixtlokaliseringssystem kapabelt att varna lokal befolkningen om inkommande blixtväder med hjälp av en kombination av sensorn AS3935 och enchipsdatorn Raspberry Pi, i ett försök att skapa en produkt som är billig, mobil och användarvänlig. Systemet består av ett nät av sensorer som registrerar och rapporterar blixtaktivitet på en webbserver. Servern är nåbar som en vanlig hemsida som är byggd enligt LAMP metoden. Projektet har nått ett stadium som borde uppnå kraven för ett ”bevis av ett koncept”, men produkten är långt ifrån färdig, då den saknar de nödvändiga algoritmerna som krävs för ordentlig databehandling. Det nuvarande systemet använder sig enbart av Rasberry Pi:s, men i teorin vore det fullt möjligt att introducera ny hårdvara i nätet, men den nuvarande produkten stöder inte sådan funktionalitet.

Page generated in 0.0906 seconds