• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

X-Ray Line Emission from Weak Wind O-Stars

Huenemoerder, David, Oskinova, L., Hamann, W., Ignace, Richard, Todt, H., Waldron, W. 01 January 2011 (has links)
The action of X-rays is commonly invoked to explain the wind properties of low-luminosity O-type stars. These stars have significantly smaller mass loss rates than predicted radiation-driven wind theories. In this respect they may resemble the first generation of supermassive stars in the early universe which presumably had weak winds due to their low metallicity. We present the high-resolution X-ray spectrum of a weak-wind star, mu Col, and discuss the potential for X-ray emission line strengths and profiles to discriminate among proposed mechanisms for the generation of X-rays in stellar winds, and in resolving the weak-wind problem.
2

Models of Forbidden Line Emission Profiles from Axisymmetric Stellar Winds.

Ignace, Richard, Brimeyer, A. 01 September 2006 (has links) (PDF)
A number of strong infrared forbidden lines have been observed in several evolved Wolf–Rayet (WR) star winds, and these are important for deriving metal abundances and testing stellar evolution models. In addition, because these optically thin lines form at large radius in the wind, their resolved profiles carry an imprint of the asymptotic structure of the wind flow. This work presents model forbidden line profile shapes formed in axisymmetric winds. It is well known that an optically thin emission line formed in a spherical wind expanding at constant velocity yields a flat-topped emission profile shape. Simulated forbidden lines are produced for a model stellar wind with an axisymmetric density distribution that treats the latitudinal ionization self-consistently and examines the influence of the ion stage on the profile shape. The resulting line profiles are symmetric about line centre. Within a given atomic species, profile shapes can vary between centrally peaked, doubly peaked, and approximately flat-topped in appearance depending on the ion stage (relative to the dominant ion) and viewing inclination. Although application to WR star winds is emphasized, the concepts are also relevant to other classes of hot stars such as luminous blue variables and Be/B[e] stars.
3

Evolving Starburst Model of FIR/sub-mm/mm Line Emission and Its Applications to M82 and Nearby Luminous Infrared Galaxies

Yao, Lihong 08 March 2011 (has links)
This thesis presents a starburst model for far-infrared/sub-millimeter/millimeter (FIR/sub-mm/mm) line emission of molecular and atomic gas in an evolving starburst region, which is treated as an ensemble of non-interacting hot bubbles which drive spherical shells of swept-up gas into a surrounding uniform gas medium. These bubbles and shells are driven by winds and supernovae within massive star clusters formed during an instantaneous starburst. The underlying stellar radiation from the evolving clusters affects the properties and structure of photodissociation regions (PDRs) in the shells, and hence the spectral energy distributions (SEDs) of the molecular and atomic line emission from these swept-up shells and the associated parent giant molecular clouds (GMCs) contains a signature of the stage evolution of the starburst. The physical and chemical properties of the shells and their structure are computed using a a simple well known similarity solution for the shell expansion, a stellar population synthesis code, and a time-dependent PDR chemistry model. The SEDs for several molecular and atomic lines ($^{12}$CO and its isotope $^{13}$CO, HCN, HCO$^+$, C, O, and C$^+$) are computed using a non-local thermodynamic equilibrium (non-LTE) line radiative transfer model. By comparing our models with the available observed data of nearby infrared bright galaxies, especially M 82, we constrain the models and in the case of M 82, provide estimates for the age of the recent starburst activity. We also derive the total H$_2$ gas mass in the measured regions of the central 1 kpc starburst disk of M 82. In addition, we apply the model to represent various stages of starburst evolution in a well known sample of nearby luminous infrared galaxies (LIRGs). In this way, we interpret the relationship between the degree of molecular excitation and ratio of FIR to CO luminosity to possibly reflect different stages of the evolution of star-forming activity within their nuclear regions. We conclude with an assessment of the strengths and weaknesses of this approach to dating starbursts, and suggest future work for improving the model.
4

Evolving Starburst Model of FIR/sub-mm/mm Line Emission and Its Applications to M82 and Nearby Luminous Infrared Galaxies

Yao, Lihong 08 March 2011 (has links)
This thesis presents a starburst model for far-infrared/sub-millimeter/millimeter (FIR/sub-mm/mm) line emission of molecular and atomic gas in an evolving starburst region, which is treated as an ensemble of non-interacting hot bubbles which drive spherical shells of swept-up gas into a surrounding uniform gas medium. These bubbles and shells are driven by winds and supernovae within massive star clusters formed during an instantaneous starburst. The underlying stellar radiation from the evolving clusters affects the properties and structure of photodissociation regions (PDRs) in the shells, and hence the spectral energy distributions (SEDs) of the molecular and atomic line emission from these swept-up shells and the associated parent giant molecular clouds (GMCs) contains a signature of the stage evolution of the starburst. The physical and chemical properties of the shells and their structure are computed using a a simple well known similarity solution for the shell expansion, a stellar population synthesis code, and a time-dependent PDR chemistry model. The SEDs for several molecular and atomic lines ($^{12}$CO and its isotope $^{13}$CO, HCN, HCO$^+$, C, O, and C$^+$) are computed using a non-local thermodynamic equilibrium (non-LTE) line radiative transfer model. By comparing our models with the available observed data of nearby infrared bright galaxies, especially M 82, we constrain the models and in the case of M 82, provide estimates for the age of the recent starburst activity. We also derive the total H$_2$ gas mass in the measured regions of the central 1 kpc starburst disk of M 82. In addition, we apply the model to represent various stages of starburst evolution in a well known sample of nearby luminous infrared galaxies (LIRGs). In this way, we interpret the relationship between the degree of molecular excitation and ratio of FIR to CO luminosity to possibly reflect different stages of the evolution of star-forming activity within their nuclear regions. We conclude with an assessment of the strengths and weaknesses of this approach to dating starbursts, and suggest future work for improving the model.
5

Modélisation 3D de régions de formation d'étoiles : la contribution de l'interface graphique GASS aux codes de transfert radiatif / 3D modelling of star-forming regions : the contribution of the graphical interface GASS to radiative transfer codes

Quénard, David 20 September 2016 (has links)
L'ère des observations interférométriques mène à la nécessité d'une description plus précise de la structure physique et de la dynamique des régions de formation d'étoiles, des coeurs pré-stellaires et des disques proto-planétaires. L'émission moléculaire et du continuum de la poussière peuvent être décrites par de multiples composantes physiques. Pour comparer avec les observations, un modèle de transfert radiatif précis et complexe de ces régions est nécessaire. J'ai développé au cours de cette thèse une application autonome appelée GASS (Generator of Astrophysical Sources Structures, Quénard et al., soumis) à cette fin. Grâce à son interface, GASS permet de créer, de manipuler et de mélanger différents composants physiques tels que des sources sphériques, des disques et des outflows. Dans cette thèse, j'ai utilisé GASS pour travailler sur différents cas astrophysiques et, entre autres, j'ai étudié en détail l'eau et l'émission de l'eau deutérée dans le coeur pré-stellaire L1544 (Quénard et al., 2016) ainsi que l'émission des ions dans la proto-étoile de faible masse IRAS16293-2422 (Quénard et al., soumis). / The era of interferometric observations leads to the need of a more and more precise description of physical structure and dynamics of star-forming regions, from pre-stellar cores to proto-planetary disks. The molecular and dust continuum emission can be described with multiple physical components. To compare with the observations, a precise and complex radiative transfer modelling of these regions is required. I have developed during this thesis a standalone application called GASS (Generator of Astrophysical Sources Structures, Quénard et al., submitted) for this purpose. Thanks to its interface, GASS allows to create, manipulate, and mix several different physical components such as spherical sources, disks, and outflows. In this thesis, I used GASS to work on different astrophysical cases and, among them, I studied in details the water and deuterated water emission in the pre-stellar core L1544 (Quénard et al., 2016) and the emission of ions in the low-mass proto-star IRAS16293-2422 (Quénard et al., submitted).
6

Spektroskopische Erfassung der Gastemperatur im Brennraum von Ottomotoren / Spectroscopic Aquisition of the Gas Temperature within the Otto Engine

Müller, Ralf 17 December 2009 (has links)
No description available.

Page generated in 0.055 seconds