• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comprehensive Digital Archiving Techniques through High-resolution Imaging System with Line Sensor / ラインセンサーを用いた高精細イメージングシステムによる総合的デジタルアーカイブ技術

Wang, Peng 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23881号 / 工博第4968号 / 新制||工||1776(附属図書館) / 京都大学大学院工学研究科機械理工学専攻 / (主査)教授 蓮尾 昌裕, 教授 松原 厚, 教授 鈴木 基史 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
2

Power line sensor networks for enhancing power line reliability and utilization

Yang, Yi 20 May 2011 (has links)
Over the last several decades, electricity consumption and generation have continually grown. Investment in the Transmission and Distribution (T&D) infrastructure has been minimal and it has become increasingly difficult and expensive to permit and build new power lines. At the same time, a growing increase in the penetration of renewable energy resources is causing an unprecedented level of dynamics on the grid. Consequently, the power grid is congested and under stress. To compound the situation, the utilities do not possess detailed information on the status and operating margins on their assets in order to use them optimally. The task of monitoring asset status and optimizing asset utilization for the electric power industry seems particularly challenging, given millions of assets and hundreds of thousands of miles of power lines distributed geographically over millions of square miles. The lack of situational awareness compromises system reliability, and raises the possibility of power outages and even cascading blackouts. To address this problem, a conceptual Power Line Sensor Network (PLSN) is proposed in this research. The main objective of this research is to develop a distributed PLSN to provide continuous on-line monitoring of the geographically dispersed power grid by using hundreds of thousands of low-cost, autonomous, smart, and communication-enabled Power Line Sensor (PLS) modules thus to improve the utilization and reliability of the existing power system. The proposed PLSN specifically targets the use of passive sensing techniques, focusing on monitoring the real-time dynamic capacity of a specific span of a power line under present weather conditions by using computational intelligence technologies. An ancillary function is to detect the presence of incipient failures along overhead power lines via monitoring and characterizing the electromagnetic fields around overhead conductors. This research integrates detailed modeling of the power lines and the physical manifestations of the parameters being sensed, with pattern recognition technologies. Key issues of this research also include design of a prototype PLS module with integrated sensing, power and communication functions, and validation of the Wireless Sensor Network (WSN) technology integrated to this proposed PLSN.
3

Multi-transit Echo Suppression for Passive Wireless Surface Acoustic Wave Sensors Using 3rd Harmonic Unidirectional Transducers and Walsh-Hadamard-like Reflectors

Rodriguez Cordoves, Luis Manuel 01 January 2017 (has links)
A passive wireless surface acoustic wave sensor of a delay-line type is composed of an antenna, a transducer that converts the EM signal into a surface acoustic wave, and a set of acoustic reflectors that reflect the incoming signal back out through the antenna. A cavity forms between the transducer and the reflectors, trapping energy and causing multiple unwanted echoes. The work in this dissertation aims to reduce the unwanted echoes so that only the main transit signal is left--the signal of interest with sensor information. The contributions of this dissertation include reflective delay-line device response in the form of an infinite impulse response (IIR) filter. This may be used in the future to subtract out unwanted echoes via post-processing. However, this dissertation will use a physical approach to echo suppression by using a unidirectional transducer. Thus a unidirectional transducer is used and also optimized for 3rd harmonic operation. Both the directionality and the coupling of the 3rd harmonic optimized SPUDT are improved over a standard electrode width controlled (EWC) SPUDT. New type of reflectors for the reflective delay-line device are also presented. These use BPSK type coding, similar to that of the Walsh-Hadamard codes. Two types are presented, variable reflectivity and variable chip-lengths. The COM model is used to simulate devices and compare the predicted echo suppression level to that of fabricated devices. Finally, a device is mounted on a tunable antenna and the echo is suppressed on a wireless operating device.

Page generated in 0.0346 seconds