• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regression using QR decomposition methods

Smith, David McCulloch January 1991 (has links)
No description available.
2

Single-Phase convective heat transfer and pressure drop coefficients in concentric annual

Van Zyl, W.R. (Warren Reece) January 2013 (has links)
Varying diameter ratios associated with smooth concentric tube-in-tube heat exchangers are known to have an effect on its convective heat transfer capabilities. Much literature exists for predicting the inner tube’s heat transfer coefficients, however, limited research has been conducted for the annulus and some of the existing correlations are known to have large errors. Linear and nonlinear regression models exist for determining the heat transfer coefficients, however, these are complex and time consuming methods and require much experimental data in order to obtain accurate solutions. A direct solution to obtain the heat transfer coefficients in the annulus is sought after. In this study a large dataset of experimental measurements on heat exchangers with annular diameter ratios of 0.483, 0.579, 0.593 and 0.712 was gathered. The annular diameter ratio is defined as the ratio of the outer diameter of the inner tube to the inner diameter of the outer tube. Using various methods, the data was processed to determine local and average Nusselt numbers in the turbulent flow regime. These methods included the modified Wilson plot technique, a nonlinear regression scheme, as well as the log mean temperature difference method. The inner tube Reynolds number exponent was assumed to be a constant 0.8 for both the modified Wilson plot and nonlinear regression methods. The logarithmic mean temperature difference method was used for both a mean analysis on the full length of the heat exchanger, and a local analysis on finite control volumes. Friction factors were calculated directly from measured pressure drops across the annuli. The heat exchangers were tested for both a heated and cooled annulus, and arranged in a horizontal counter-flow configuration with water as the working medium. Data was gathered for Reynolds numbers (based on the hydraulic diameter) varying from 10 000 to 28 000 for a heated annulus and 10 000 to 45 000 for a cooled annulus. Local inner wall temperatures which are generally difficult to determine, were measured with thermocouples embedded within the wall. Flow obstructions within the annuli were minimized, with only the support structures maintaining concentricity of the inner and outer tubes impeding flow. / Dissertation (MEng)--University of Pretoria, 2013. / gm2014 / Mechanical and Aeronautical Engineering / unrestricted
3

Robust estimation of the number of components for mixtures of linear regression

Meng, Li January 1900 (has links)
Master of Science / Department of Statistics / Weixin Yao / In this report, we investigate a robust estimation of the number of components in the mixture of regression models using trimmed information criterion. Compared to the traditional information criterion, the trimmed criterion is robust and not sensitive to outliers. The superiority of the trimmed methods in comparison with the traditional information criterion methods is illustrated through a simulation study. A real data application is also used to illustrate the effectiveness of the trimmed model selection methods.
4

Évaluation de modèles de régression linéaire pour la cartographie de l'équivalent en eau de la neige dans la province de Québec avec le capteur micro-ondes passives AMSR-E

Comtois-Boutet, Félix January 2007 (has links)
Résumé: La mesure de l’équivalent en eau de la neige (EEN) sur le terrain permet de prédire la quantité d’eau libérée par la fonte de la neige. La télédétection dans les micro-ondes passives offre le potentiel d’estimer I’EEN et peut complémenter ces observations de façon synoptique pour l’ensemble du territoire. Un produit de cartographie de I’EEN couvrant l’ensemble du globe a été élaboré par le NSIDC basé sur le capteur AMSR-E. Cet instrument, lancé en 2002, a une résolution améliorée par rapport aux capteurs antérieurs. L’estimation de I’EEN se base sur la différence entre un canal peu affecté (19 GHz) et un canal affecté (37 GHz) par la diffusion de volume de la neige. La précision de ce produit a été évaluée pour la province de Québec à l’hiver 2003 et à l’hiver 2004 qui ont un EEN moyen de 170 mm. Des sous-estimations importantes ont été révélées et une certaine difficulté à détecter la présence de neige. Des modèles régionaux de régressions linéaires ont été développés pour le Québec. Des corrections pour la fraction d’eau et de forêt ont été appliquées à la combinaison T19v.37v et ont permis d’améliorer les résultats. Ces corrections sont basées sur la température de l’air du modèle GEM. Les meilleurs résultats sont pour la classe de neige taïga à l’hiver 2003 avec une erreur relative de 24 % tandis que l’erreur relative est d’environ 40 % pour la région maritime. Les erreurs élevées dans la classe taïga ont été attribuées à des couverts de neige plus épais que la capacité de pénétration des micro-ondes tandis que les erreurs de la classe maritime a des fractions forêt élevées et à la neige mouillée. La présence d’importante quantité de neige et la forêt dense de la province de Québec compliquent l’estimation de I’EEN au Québec avec un modèle de régression. || Abstract: Snow water equivalent (SWE) measurements in the field allow estimation of the quantity of released water from the melting of snow. This is useful to predict the water reserve available for production of hydro-electricity. Remote sensing with microwave can estimate SWE and complement those observations synoptically for whole territories. A SWE mapping products was developed by NSIDC based on the AMSR-E sensor launched in 2002 with an improved resolution compared to previous sensors. SWE estimation is based on difference between a channel weakly affected (19 GHz) and a channel strongly affected by volume scattering. The precision of this product was evaluated for the province of Quebec in winter 2003 and winter 2004 with a mean SWE of 170 mm. Important underestimation and some difficulty of detecting the snow was revealed. Regional linear regression models were developed for the province of Quebec. Corrections for forest and water fraction were applied on T19V-37V combination and permit to improve the results. Those corrections were based on air temperature from the GEM model. Best results were found for taiga snow class in winter 2003 with a relative error of 28% and approximately 40% for maritime snow class. High errors in the taiga region were attributed to snow depth higher than the penetration depth of the microwave and errors in the maritime region to high forest density and wet snow. The important snow amount and high density forest of the province of Quebec hampers the estimation of SWE with a regression model.
5

Modified Information Criterion for Change Point Detection with its Application to Simple Linear Regression Models

Karki, Deep Sagar 23 August 2022 (has links)
No description available.
6

Classificação da variação, tamanho ótimo de parcela e curva de crescimento para experimentos com eucalipto /

Lopes, Beatriz Garcia January 2019 (has links)
Orientador: Glaucia Amorim Faria / Resumo: O eucalipto é difundido em várias regiões brasileiras e no mundo. Os Estados brasileiros com maiores áreas de plantio do eucalipto são Minas Gerais, Mato Grosso do Sul, São Paulo e Paraná. Com crescente contribuição ao longo dos anos, o seu cultivo tem gerado empregos tanto na área rural quanto na área urbana. O que torna de suma importância maiores pesquisas que visem a melhoria das áreas de plantio, maiores informações para condução e melhoria de produção, o que acarretará em maiores ofertas para o mercado nacional. Neste cenário, estudos que auxiliem o pesquisador a conhecer a variabilidade desta cultura, definir o tamanho ideal de parcela e as curvas de crescimento que melhor representem o conjunto de dados ao longo do tempo, serão essenciais para que se faça a inferência correta, se tenha maior precisão e maximização das informações, garantindo maior eficiência do procedimento experimental, como redução do tempo de espera, permitindo ao pesquisador a comparação do comportamento da planta e seus componentes mais relevantes. Para tanto, o trabalho tem por objetivo: a recomendação de uma tabela de classificação de variação (utilizando os métodos de Garcia, Pimentel-Gomes e Costa, Seraphin e Zimmermann); o tamanho ótimo de parcelas (utilizando o método da máxima curvatura modificada) em experimentos em casa de vegetação; o modelo não-linear (Logístico, Gompertz e Von Bertalanffy) que melhor se adeque ao padrão de crescimento ao longo do tempo, em experimentos com a cultura d... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Eucalyptus is widespread in several Brazilian regions and in the world. The Brazilian states with the largest eucalyptus plantation areas are Minas Gerais, Mato Grosso do Sul, São Paulo, and Paraná. With growing contribution over the years, its cultivation has generated jobs in both rural and urban areas. This makes more important research to improve the planting areas, greater information for conducting and improving production, which will lead to greater offers for the domestic market. In this scenario, studies that help the researcher to know the variability of this crop, to define the ideal plot size and the growth curves that best represent the data set over time, will be essential for correct inference, if greater accuracy and maximization of information, guaranteeing greater efficiency of the experimental procedure, such as reduction of waiting time, allowing the researcher to compare the behavior of the plant and its most relevant components. To do so, the objective of the study is: to recommend a variation classification table (using the methods of Garcia, Pimentel-Gomes and Costa, Seraphin and Zimmermann); the optimal size of plots (using the modified maximum curvature method) in greenhouse experiments; the non-linear model (Logistic, Gompertz and Von Bertalanffy) that best fit the pattern of growth over time, in experiments with the Eucalyptus crop. / Mestre
7

Modelos de regressão linear heteroscedásticos com erros t-Student: uma abordagem bayesiana objetiva / Heteroscedastics linear regression models with Student t erros: an objective bayesian analysis.

Souza, Aline Campos Reis de 18 February 2016 (has links)
Neste trabalho, apresentamos uma extensão da análise bayesiana objetiva feita em Fonseca et al. (2008), baseada nas distribuições a priori de Jeffreys para o modelo de regressão linear com erros t-Student, para os quais consideramos a suposição de heteoscedasticidade. Mostramos que a distribuição a posteriori dos parâmetros do modelo regressão gerada pela distribuição a priori é própria. Através de um estudo de simulação, avaliamos as propriedades frequentistas dos estimadores bayesianos e comparamos os resultados com outras distribuições a priori encontradas na literatura. Além disso, uma análise de diagnóstico baseada na medida de divergência Kullback-Leiber é desenvolvida com a finalidade de estudar a robustez das estimativas na presença de observações atípicas. Finalmente, um conjunto de dados reais é utilizado para o ajuste do modelo proposto. / In this work , we present an extension of the objective bayesian analysis made in Fonseca et al. (2008), based on Jeffreys priors for linear regression models with Student t errors, for which we consider the heteroscedasticity assumption. We show that the posterior distribution generated by the proposed Jeffreys prior, is proper. Through simulation study , we analyzed the frequentist properties of the bayesian estimators obtained. Then we tested the robustness of the model through disturbances in the response variable by comparing its performance with those obtained under another prior distributions proposed in the literature. Finally, a real data set is used to analyze the performance of the proposed model . We detected possible in uential points through the Kullback -Leibler divergence measure, and used the selection model criterias EAIC, EBIC, DIC and LPML in order to compare the models.
8

Modelos de regressão linear heteroscedásticos com erros t-Student: uma abordagem bayesiana objetiva / Heteroscedastics linear regression models with Student t erros: an objective bayesian analysis.

Aline Campos Reis de Souza 18 February 2016 (has links)
Neste trabalho, apresentamos uma extensão da análise bayesiana objetiva feita em Fonseca et al. (2008), baseada nas distribuições a priori de Jeffreys para o modelo de regressão linear com erros t-Student, para os quais consideramos a suposição de heteoscedasticidade. Mostramos que a distribuição a posteriori dos parâmetros do modelo regressão gerada pela distribuição a priori é própria. Através de um estudo de simulação, avaliamos as propriedades frequentistas dos estimadores bayesianos e comparamos os resultados com outras distribuições a priori encontradas na literatura. Além disso, uma análise de diagnóstico baseada na medida de divergência Kullback-Leiber é desenvolvida com a finalidade de estudar a robustez das estimativas na presença de observações atípicas. Finalmente, um conjunto de dados reais é utilizado para o ajuste do modelo proposto. / In this work , we present an extension of the objective bayesian analysis made in Fonseca et al. (2008), based on Jeffreys priors for linear regression models with Student t errors, for which we consider the heteroscedasticity assumption. We show that the posterior distribution generated by the proposed Jeffreys prior, is proper. Through simulation study , we analyzed the frequentist properties of the bayesian estimators obtained. Then we tested the robustness of the model through disturbances in the response variable by comparing its performance with those obtained under another prior distributions proposed in the literature. Finally, a real data set is used to analyze the performance of the proposed model . We detected possible in uential points through the Kullback -Leibler divergence measure, and used the selection model criterias EAIC, EBIC, DIC and LPML in order to compare the models.
9

Modelos de regressão linear heteroscedásticos com erros t-Student : uma abordagem bayesiana objetiva / Heteroscedastics linear regression models with Student-t errors: an objective bayesian analysis

Souza, Aline Campos Reis de 18 February 2016 (has links)
Submitted by Luciana Sebin (lusebin@ufscar.br) on 2016-09-26T18:57:40Z No. of bitstreams: 1 DissACRS.pdf: 1390452 bytes, checksum: a5365fdbf745228c0174f2643b3f7267 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-27T19:59:56Z (GMT) No. of bitstreams: 1 DissACRS.pdf: 1390452 bytes, checksum: a5365fdbf745228c0174f2643b3f7267 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-27T20:00:01Z (GMT) No. of bitstreams: 1 DissACRS.pdf: 1390452 bytes, checksum: a5365fdbf745228c0174f2643b3f7267 (MD5) / Made available in DSpace on 2016-09-27T20:00:08Z (GMT). No. of bitstreams: 1 DissACRS.pdf: 1390452 bytes, checksum: a5365fdbf745228c0174f2643b3f7267 (MD5) Previous issue date: 2016-02-18 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / In this work , we present an extension of the objective bayesian analysis made in Fonseca et al. (2008), based on Je reys priors for linear regression models with Student t errors, for which we consider the heteroscedasticity assumption. We show that the posterior distribution generated by the proposed Je reys prior, is proper. Through simulation study , we analyzed the frequentist properties of the bayesian estimators obtained. Then we tested the robustness of the model through disturbances in the response variable by comparing its performance with those obtained under another prior distributions proposed in the literature. Finally, a real data set is used to analyze the performance of the proposed model . We detected possible in uential points through the Kullback -Leibler divergence measure, and used the selection model criterias EAIC, EBIC, DIC and LPML in order to compare the models. / Neste trabalho, apresentamos uma extensão da análise bayesiana objetiva feita em Fonseca et al. (2008), baseada nas distribuicões a priori de Je reys para o modelo de regressão linear com erros t-Student, para os quais consideramos a suposicão de heteoscedasticidade. Mostramos que a distribuiçãoo a posteriori dos parâmetros do modelo regressão gerada pela distribuição a priori e própria. Através de um estudo de simulação, avaliamos as propriedades frequentistas dos estimadores bayesianos e comparamos os resultados com outras distribuições a priori encontradas na literatura. Além disso, uma análise de diagnóstico baseada na medida de divergência Kullback-Leiber e desenvolvida com analidade de estudar a robustez das estimativas na presença de observações atípicas. Finalmente, um conjunto de dados reais e utilizado para o ajuste do modelo proposto.
10

Superscalar Processor Models Using Statistical Learning

Joseph, P J 04 1900 (has links)
Processor architectures are becoming increasingly complex and hence architects have to evaluate a large design space consisting of several parameters, each with a number of potential settings. In order to assist in guiding design decisions we develop simple and accurate models of the superscalar processor design space using a detailed and validated superscalar processor simulator. Firstly, we obtain precise estimates of all significant micro-architectural parameters and their interactions by building linear regression models using simulation based experiments. We obtain good approximate models at low simulation costs using an iterative process in which Akaike’s Information Criteria is used to extract a good linear model from a small set of simulations, and limited further simulation is guided by the model using D-optimal experimental designs. The iterative process is repeated until desired error bounds are achieved. We use this procedure for model construction and show that it provides a cost effective scheme to experiment with all relevant parameters. We also obtain accurate predictors of the processors performance response across the entire design-space, by constructing radial basis function networks from sampled simulation experiments. We construct these models, by simulating at limited design points selected by latin hypercube sampling, and then deriving the radial neural networks from the results. We show that these predictors provide accurate approximations to the simulator’s performance response, and hence provide a cheap alternative to simulation while searching for optimal processor design points.

Page generated in 0.4961 seconds