Spelling suggestions: "subject:"1inear accelerator"" "subject:"cinear accelerator""
1 |
High order parametric x-radiation from silicon and lithium fluoride crystal monochromatorsThien, Joseph R. January 1995 (has links) (PDF)
Thesis (M.S. in Physics) Naval Postgraduate School, December 1995. / "December 1995." Thesis advisor(s): Xavier K. Maruyama. Includes bibliographical references. Also available online.
|
2 |
Finite element analysis of rotationally symmetric electromagnetic cavitiesFernandez Fernandez, Federico Anibal January 1981 (has links)
No description available.
|
3 |
Coaxial air core electromagnetic acceleratorsMongeau, Peter Parr January 1982 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Physics, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE / Vita. / Bibliography: leaves 307-312. / by Peter Parr Mongeau. / Ph.D.
|
4 |
The development of a new measure of linear accelerator throughput in radiation oncology treatment delivery : the basic treatment equivalent (B.T.E.) /Delaney, G. P. January 2001 (has links)
Thesis (M.D.)--University of New South Wales, 2001. / Also available online.
|
5 |
COMMISSIONING AND ACCEPTANCE TESTING OF A TRUEBEAM LINEAR ACCELERATORUnknown Date (has links)
Due to the difficulty of a complex commissioning technique for a multi energetic, multi-modality linear accelerator, I perform all the commissioning and acceptance testing for a TrueBeam linear accelerator with 4 megavoltage (MV) energies of which 2 are flattening filter-free (FFF) and 6 electron energies varying from 6 MeV to 20 MeV.
A 2 dimensional (2D) water tank was used for scanning all the required field sizes for all the energies. The one dimensional (1D) water tank was used to collect all the output factors for all the photon fields sizes small to medium electron field sizes. For the large electron fields sizes, we had to use the 2D water tank. All the collected data was converted into a file type accepted by the planning system (Eclipse) and subsequently imported there. Treatment plans were generated using multiple forms of planning to verify the viability and quality of the beam data commissioned. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection
|
6 |
The Development of a New Measure of Linear Accelerator Throughput in Radiation Oncology Treatment Delivery - The Basic Treatment Equivalent (B.T.E.).Delaney, Geoffrey Paul, SWSAHS Clinical School, UNSW January 2001 (has links)
The measurement of productivity in health care is difficult. Studies in various specialty disciplines of medicine have identified that the variation in complexities (casemix) between departments or hospitals will vary and therefore will affect any basic productivity statistics that are produced. Radiation oncology is a discipline of medicine where no such studies into radiotherapy casemix variations and the effect that these may have on productivity measures have been performed, despite the high capital expenditure involved in the delivery of radiotherapy. Radiation oncology productivity on linear accelerators is currently measured by the number of patients treated or number of treatment fields treated per unit time (usually per hour). These statistics have been collected for many years and productivity assessments were made on the variations in these statistics that exist between departments. However, these statistics do not consider the variations in casemix that occur between departments. These complexity differences may be quite marked and therefore may strongly influence the ability of a department to achieve a high patient or treatment field throughput. This may be seen as 'reduced productivity' with no consideration of the complexity of the caseload seen in the department. In addition, future technological changes that improve patient outcome may be introduced. These changes may make treatment more complex. Using older measures of productivity such as fields per hour or patients per hour will not consider these technological changes and the subsequent changes in complexity and hence departments may be seen as less productive in the future using current methods of analysis unless a more valid measure of productivity that considers complexity variations is introduced. There have only been 3 previous attempts at developing measures of linear accelerator productivity. Each of these models have been developed empirically and have not been clinically validated. No previous attempts have been made in determining a scientifically-derived complexity model that considers the variations in treatment technique. This thesis describes research performed between 1995 and 2001. This research study???s primary aims were to study the factors that affect radiotherapy treatment time and treatment complexity and to develop a model of linear accelerator productivity that does consider complexity variations in radiotherapy treatment delivery. This model is called the Basic Treatment Equivalent (B.T.E.). This series of trials examines the old models of linear accelerator productivity, describes the derivation and validation of the BTE model both in Australasia and the United Kingdom, identifies the factors that contribute to treatment time and treatment complexity, describes the development of a pilot model of productivity of gynaecological brachytherapy and outpatient chemotherapy using similar BTE methodology, discusses the potential uses of the BTE model, recent independent reviews of BTE by other groups, and the advantages and disadvantages of using such a model. This research has shown that it is possible to identify the various factors that contribute to treatment time and treatment complexity and to derive a model of linear accelerator productivity that considers the variations in complexity. The BTE model has been clinically validated in Australia, New Zealand and a couple of departments in the United Kingdom and Canada and has been adopted as a new measure by various groups. It requires regular updating to maintain currency particularly as there are frequent improvements in radiation treatment technology. Future studies should identify the differences these technological enhancements make to productivity. The BTE derived from outpatient chemotherapy delivery and gynaecological brachytherapy delivery shows promise although these models require further research with the assistance of other departments.
|
7 |
The Development of a New Measure of Linear Accelerator Throughput in Radiation Oncology Treatment Delivery - The Basic Treatment Equivalent (B.T.E.).Delaney, Geoffrey Paul, SWSAHS Clinical School, UNSW January 2001 (has links)
The measurement of productivity in health care is difficult. Studies in various specialty disciplines of medicine have identified that the variation in complexities (casemix) between departments or hospitals will vary and therefore will affect any basic productivity statistics that are produced. Radiation oncology is a discipline of medicine where no such studies into radiotherapy casemix variations and the effect that these may have on productivity measures have been performed, despite the high capital expenditure involved in the delivery of radiotherapy. Radiation oncology productivity on linear accelerators is currently measured by the number of patients treated or number of treatment fields treated per unit time (usually per hour). These statistics have been collected for many years and productivity assessments were made on the variations in these statistics that exist between departments. However, these statistics do not consider the variations in casemix that occur between departments. These complexity differences may be quite marked and therefore may strongly influence the ability of a department to achieve a high patient or treatment field throughput. This may be seen as 'reduced productivity' with no consideration of the complexity of the caseload seen in the department. In addition, future technological changes that improve patient outcome may be introduced. These changes may make treatment more complex. Using older measures of productivity such as fields per hour or patients per hour will not consider these technological changes and the subsequent changes in complexity and hence departments may be seen as less productive in the future using current methods of analysis unless a more valid measure of productivity that considers complexity variations is introduced. There have only been 3 previous attempts at developing measures of linear accelerator productivity. Each of these models have been developed empirically and have not been clinically validated. No previous attempts have been made in determining a scientifically-derived complexity model that considers the variations in treatment technique. This thesis describes research performed between 1995 and 2001. This research study???s primary aims were to study the factors that affect radiotherapy treatment time and treatment complexity and to develop a model of linear accelerator productivity that does consider complexity variations in radiotherapy treatment delivery. This model is called the Basic Treatment Equivalent (B.T.E.). This series of trials examines the old models of linear accelerator productivity, describes the derivation and validation of the BTE model both in Australasia and the United Kingdom, identifies the factors that contribute to treatment time and treatment complexity, describes the development of a pilot model of productivity of gynaecological brachytherapy and outpatient chemotherapy using similar BTE methodology, discusses the potential uses of the BTE model, recent independent reviews of BTE by other groups, and the advantages and disadvantages of using such a model. This research has shown that it is possible to identify the various factors that contribute to treatment time and treatment complexity and to derive a model of linear accelerator productivity that considers the variations in complexity. The BTE model has been clinically validated in Australia, New Zealand and a couple of departments in the United Kingdom and Canada and has been adopted as a new measure by various groups. It requires regular updating to maintain currency particularly as there are frequent improvements in radiation treatment technology. Future studies should identify the differences these technological enhancements make to productivity. The BTE derived from outpatient chemotherapy delivery and gynaecological brachytherapy delivery shows promise although these models require further research with the assistance of other departments.
|
8 |
Geometry estimation and adaptive actuation for centering preprocessing and precision measurementMears, Michael Laine. January 2006 (has links)
Thesis (Ph. D.)--Mechanical Engineering, Georgia Institute of Technology, 2006. / Dr. Richard F. Salant, Committee Member ; Dr. Shreyes N. Melkote, Committee Member ; Dr. Francis M. Kolarits, Committee Member ; Dr. Jane C. Ammons, Committee Member ; Dr. Thomas R. Kurfess, Committee Chair.
|
9 |
Numerical and experimental studies of coherent Smith-Purcell radiationTaheri, Faissal Bakkali January 2016 (has links)
This thesis investigates the properties of coherent Smith-Purcell radiation (cSPr) at femtosecond-scale in the case of electrons bunches in the ultrarelativistic regimes. Of particular interest is the use of cSPR as a diagnostic tool to determine the longitudinal time profiles of such bunches, the study of azimuthal distribution of the radiated energy, and a contribution to the understanding of polarization properties. The study consists in a first theoretical part carried mostly in the context of the surface-current theory, supported with insights from particle-in-cell simulations. Then, as a step toward a better determination of time profile, the question of phase reconstruction is addressed through the design of a new algorithm proposed in this thesis and tested in known challenging cases. Experimental results are then presented, spanning shifts having taken place at the FACET facility at SLAC, Stanford, between 2013 and 2015.
|
10 |
Aspects of the design and construction of a 16.45 KMc/sec electron acceleratorArmstrong, Alan January 1964 (has links)
No description available.
|
Page generated in 0.0718 seconds