Spelling suggestions: "subject:"1inear free energy relationship."" "subject:"cinear free energy relationship.""
1 |
FP-LMTO modeling of ZnSe and ZnMgSe alloyYang, Yaxiang. January 2001 (has links)
Thesis (Ph. D.)--West Virginia University, 2001. / Title from document title page. Document formatted into pages; contains viii, 113 p. : ill. (some col.). Includes abstract. Includes bibliographical references.
|
2 |
Electrokinetic chromatography using novel unilamellar vesicles for unique separations and prediction of intestinal permeability /Schuster, Stephanie Ann. Foley, Joe Preston, January 2007 (has links)
Thesis (Ph.D.)--Drexel University, 2007. / Includes abstract and vita. Includes bibliographical references (leaves 148-150).
|
3 |
Application of linear free energy relationship in marine chemistry and analysis of the wintertime carbonate data in the northern North Atlantic OceanLin, Kaijun 12 June 1986 (has links)
Graduation date: 1987
|
4 |
Examination and Development of the Correlation Consistent Composite ApproachWilliams, T. Gavin 12 1900 (has links)
The primary focus of this dissertation is the advancement of the correlation consistent composite approach (ccCA) methodology from its original formulation to the current implementation. Although for large main group test sets which contained both first- (Li-Ne) and second-row (Na-Ar) species ccCA produced chemical accuracy (generally estimated as a deviation of ~1 kcal mol-1 from reliable experiment), the second-row species were smaller in molecular size in comparison to their corresponding first-row species. Previous theoretical work has shown that the accuracy for theoretical calculations involving second-row species (specifically sulfur-containing species) are more basis set dependent than first-row species. Therefore, an analysis of the accuracy of ccCA for sulfur-containing species is warranted. The ccCA methodology is used to evaluate both enthalpies of formation and bond dissociation energies of sulfur-containing species as well as examine isomerization energies for three sets of sulfur-containing isomers. During the testing of ccCA for sulfur-containing species two observations were made which led to further investigations. First, there is no agreement between different theoretical methodologies on the lowest energetic isomer between SNO and NSO. In fact, G3 and G3B3 which differ only by the geometry of the single-point calculations do not agree on the lowest isomer. For this reason, larger, more complete theoretical treatments of SNO and NSO are investigated. Second, for open-shell sulfur-containing systems the accuracy of the ccCA methodology begins to degrade when spin-contamination becomes non-negligible. Therefore, we investigate the accuracy of the ccCA methodology when spin-contamination is removed from the wavefunction. Finally, the ccCA methodology is utilized in a multilayer ONIOM approach as the high level of theory in conjunction with density functional theory as the low level for the C-H bond dissociation energies of anthracene and fluorene analogues.
|
5 |
Model Analysis of Cellobiose Solubility in Organic Solvents and WaterHeng, Joseph O. 18 May 2020 (has links)
The solubility of cellobiose in 18 organic liquids and water was measured at 20°C. Hydrogen bond acceptors were the most effective solvents. Three models were analyzed to evaluate their accuracy and to understand factors that affect cellobiose solubility: Hansen solubility parameters (HSP), linear free energy relationship (LFER), and UNIQUAC functional-group activity coefficients (UNIFAC). The HSP of cellobiose were determined and the model was able to distinguish between most good and poor solvents, however, proved to be occasionally unreliable due to a false negative. The LFER model produced an empirical equation involving contributions from solvent molar refraction, polarizability, acidity, basicity, and molar volume, which predicted cellobiose solubilities to within ±2 log units. LFER indicated that good solvents were highly polarizable and had low molar volume, which was consistent with the good solvents found for cellobiose. A modified version of UNIFAC that includes an association term (A-UNIFAC) predicted the solubility of cellobiose in water and alcohols to within ±0.6 log units, indicating that A-UNIFAC can be used to predict the solubility of cellobiose and other carbohydrates provided additional data to extend the model to solvents other than water and alcohols.
|
6 |
Linear combination methods for prediction of drug skin permeationScheler, S., Fahr, A., Liu, Xiangli 01 1900 (has links)
Yes / Many in-vitro methods for prediction of skin permeability have been reported in literature. Cerasome electrokinetic chromatography is one of the most sophisticated approaches representing a maximum level of similarity to the lipid phase of the stratum corneum. One goal of this study was to investigate the affinity pattern of Cerasome and to compare it with the permeability profile of human skin. Another purpose was to study the applicability of Hansen solubility parameters for modelling skin permeation and to investigate the predictive and explanatory potential of this method. Visualisation in Hansen diagrams revealed very similar profiles of Cerasome electrokinetic chromatography retention factors and skin permeability coefficients. In both cases, the characteristic pattern with two clusters of highly retained or highly permeable substances could be shown to be mainly caused by two groups of compounds, one of them with high affinity to ceramides, fatty acids and lecithin and the other being more affine to cholesterol. If based on a sufficiently comprehensive experimental dataset, model-independent predictions of skin permeability data using three-component Hansen solubility parameters are able to achieve similar accuracy as calculations made with an Abraham linear free energy relationship model in which the compounds are characterized by seven physicochemical descriptors.
|
7 |
An Equation for the Prediction of Human Skin Permeability of Neutral Molecules, Ions and Ionic SpeciesZhang, K., Abraham, M.H., Liu, Xiangli 22 February 2017 (has links)
Yes / Experimental values of permeability coefficients, as log Kp, of chemical compounds across human skin were collected by carefully screening the literature, and adjusted to 37 °C for the effect of temperature. The values of log Kp for partially ionized acids and bases were separated into those for their neutral and ionic species, forming a total data set of 247 compounds and species (including 35 ionic species). The obtained log Kp values have been regressed against Abraham solute descriptors to yield a correlation equation with R2 = 0.866 and SD = 0.432 log units. The equation can provide valid predictions for log Kp of neutral molecules, ions and ionic species, with predictive R2 = 0.858 and predictive SD = 0.445 log units calculated by the leave-one-out statistics. The predicted log Kp values for Na+ and Et4N+ are in good agreement with the observed values. We calculated the values of log Kp of ketoprofen as a function of the pH of the donor solution, and found that log Kp markedly varies only when ketoprofen is largely ionized. This explains why models that neglect ionization of permeants still yield reasonable statistical results. The effect of skin thickness on log Kp was investigated by inclusion of two indicator variables, one for intermediate thickness skin and one for full thickness skin, into the above equation. The newly obtained equations were found to be statistically very close to the above equation. Therefore, the thickness of human skin used makes little difference to the experimental values of log Kp.
|
8 |
Structural properties governing drug-plasma protein binding determined by high-performance liquid chromatography methodKamble, Sharad R., Loadman, Paul, Abraham, M.H., Liu, Xiangli 2017 October 1928 (has links)
Yes / The high-performance liquid chromatography (HPLC) method employing stationary phases immobilized with plasma proteins was used for this study to investigate the structural properties governing drug-plasma protein binding. A set of 65 compounds with a broad range of structural diversity (in terms of volume, hydrogen-bonding, polarity and electrostatic force) were selected for this purpose. The Abraham linear free energy relationship (LFER) analyses of the retention factors on the immobilized HSA (human serum albumin) and AGP (α1-acid glycoprotein) stationary phases showed that McGowan’s characteristic molecular volume (V), dipolarity/polarizability (S) and hydrogen bond basicity (B) are the three significant molecular descriptors of solutes determining the interaction with immobilized plasma proteins, whereas excess molar refraction (E) is less important and hydrogen bond acidity (A) is not of statistical significance in both systems, for electrically neutral compounds. It was shown that ionised acids, as carboxylate anions, bind very strongly to the immobilized HSA stationary phase and that ionised bases, as cations bind strongly to the AGP stationary phase. This is the first time that the effect of ionised species on plasma protein binding has been determined quantitatively; the increased binding of acids to HSA is due almost entirely to acids in their ionised form.
|
9 |
Predicting the skin-permeating components of externally-applied medicinal herbs: application of a newly constructed linear free-energy relationship equation for human skin permeationZeng, X., Wang, Z., Liu, Xiangli, Chen, M., Fahr, A., Zhang, K. 06 May 2018 (has links)
No / A linear free-energy relationship (LFER) equation that is able to provide a valid prediction of the skin permeability coefficients (log Kp) of neutral molecules, ions and ionic species has recently been constructed and optimized. This study aimed to evaluate the feasibility of predicting the skin-permeating components (SPCs) of externally applied herbs using the LFER equation, with Evodiae fructus (EF) taken as a model herb. The log Kp values of the reported chemical components of EF at pH 4.0 were calculated using the LFER equation and their structural descriptors. The results showed that the essential oils, quinolone, acridone and indole alkaloids of EF are more permeable when compared to other main components, such as phenylpropanoids, furoquinoline alkaloids, limonoids and flavonoids. The SPCs of EF were further collected via ex vivo skin permeation experiments, and analyzed by liquid chromatography-high resolution tandem mass spectrometry. A total of 80 SPCs were detected, and part of them were tentatively identified based on their empirical molecular formulae and MS/MS spectra. The SPCs are made up of 58 alkaloids, including 23 or more quinolone alkaloids, 14 or more indole alkaloids and 1 acridone alkaloid, and 22 non-alkaloids, including 7 or more essential oils and 1 flavonoid, which is in good agreement with the prediction by the LFER equation. It is suggested that a log Kp of −7.0 may be considered as a borderline, above which are potential SPCs and below which are non-SPCs. Very interestingly, the primary SPCs give a good explanation to the antihypertensive action of externally applied EF. To sum up, the LFER equation can be used to predict the SPCs of externally applied herbs, and thus to narrow the range of their potential effective components and speed up the pharmacological study. / This study was supported by the National Natural Science Foundation of China (Grant No. 81703939 and 81503221), the China Postdoctoral Science Foundation (Grant No. 2017M620403), the Project of Industry, Education and Research Funds of Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources (Grant No. FJMBIO1608), the Science and Technology Planning Project of Fujian Province (Grant No. 2017Y4015), the Natural Science Foundation of Guangdong Province (Grant No. 2014A030310365), the Natural Science Foundation of Hubei Province (Grant No. 2014CFC1045) and the Fundamental Research Funds for the Central Universities (Grant No. 20720150069), as well as the Clinical Medical Research Program of Wuhan Health and Family Planning Commission (Grant No. WX15A02).
|
10 |
Concerted or Stepwise? : <i>β-Elimination, Nucleophilic Substitution, Copper Catalysed Aziridination and Ruthenium Catalysed Transfer Hydrogenation Studied by Kinetic Isotope Effects and Linear Free-Energy Relationships</i>Ryberg, Per January 2002 (has links)
<p>This thesis describes the use of kinetic isotope effects, linear free energy relationships and stereochamical studies to distinguish between different mechanistic alternatives and to obtain information about transition state structure.</p><p>In the first part fluorine and deuterium kinetic isotope effects were determined for the base promoted HF elimination from 4-fluoro-4-(4’-nitrophenyl)butane-2-on. During this work a new method for the determination of fluorine kinetic isotope effects was developed. The results from the study demonstrates that the reaction proceeds via an E1cB<sub>ip</sub> mechanism.</p><p>In the second part the transition state structure for the S<sub>N</sub>2 reaction between ethyl chloride and cyanide ion in DMSO was studied. Kinetic isotope effects for six different positions in the reacting system, both in cyanide and ethyl chloride, were determined. The experimental isotope effects were then compared with the theoretically predicted isotope effects. </p><p>The third part describes the use of Hammett type free-energy relationships and stereochemical evidence to study the mechanism of the copper catalysed alkene aziridination. The results from the study support a model that involves the simultaneous presence of two different copper nitrene intermediates. One which reacts non-stereospecifically via a radical intermediate and one which reacts stereospecifically via a concerted mechanism.</p><p>In the fourth part a mechanistic study of the Ru(aminoalcohol) catalysed transfer hydrogenation of acetophenone in isopropanol is described. Kinetic isotope effects were determined for both proton and hydride transfer. The observation of significant primary deuterium kinetic isotope effects for both proton and hydride transfer support a mechanism where the proton and hydride are transferred simultaneously in a concerted mechanism.</p>
|
Page generated in 0.1541 seconds