• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dinamica não linear e controle de uma aeronave em voo longitudinal / Non linear dynamics and control of an aircraft in longitudinal flight

Pereira, Danilo Carlos 30 July 2007 (has links)
Orientadores: Jose Manoel Balthazar, Paulo R. G. Kurka / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-09T22:56:56Z (GMT). No. of bitstreams: 1 Pereira_DaniloCarlos_D.pdf: 3711639 bytes, checksum: 2413d33f619760c04be8cc5320c0a84b (MD5) Previous issue date: 2007 / Resumo: Neste trabalho analisou-se a dinâmica não linear de uma aeronave em vôo longitudinal. Efetuou-se a análise do comportamento bifurcacional da aeronave F-8 ¿Cruzader¿. Na análise bifurcacional foi estudado o comportamento topológico desta aeronave tomando-se dois parâmetros de controle: a deflexão do profundor e a alteração da massa da referida aeronave. Ante a pesquisa desenvolvida, foi proposto um projeto de controle linear ótimo com o objetivo de estabilizar as oscilações do ângulo de ataque, considerando-se regiões criticas do comportamento não linear da aeronave. Adicionalmente, incluiu-se no modelo matemático a variação da velocidade longitudinal da aeronave, visto tratar-se de simulações numéricas em um túnel de vento virtual / Abstract: In this work it was analyzed the non linear dynamic of an aircraft taken onto longitudinal flight. It was done analysis of the bifurcacional behavior of the aircraft F-8 ¿Cruzader¿. In the bifurcational analysis was studied the topological behavior of this aircraft taken into account two parameters of control: the deflection of the elevator and the alteration of the mass of the related aircraft. In the face of the developed research, an optimum linear control project was proposed with the objective of stabilizing the oscillations of the angle-of-attack. Additionally, the variation of the longitudinal speed of the aircraft was included in the mathematic model in order to simulate the oscillatory movement of the aircraft considered, in a tunnel of virtual wind / Doutorado / Materiais e Processos de Fabricação / Mestre em Engenharia Mecânica
2

General Vector Explicit - Impact Time and Angle Control Guidance

Robinson, Loren 01 January 2015 (has links)
This thesis proposes and evaluates a new cooperative guidance law called General Vector Explicit - Impact Time and Angle Control Guidance (GENEX-ITACG). The motivation for GENEX-ITACG came from an explicit trajectory shaping guidance law called General Vector Explicit Guidance (GENEX). GENEX simultaneously achieves design specifications on miss distance and terminal missile approach angle while also providing a design parameter that adjusts the aggressiveness of this approach angle. Encouraged by the applicability of this user parameter, GENEX-ITACG is an extension that allows a salvo of missiles to cooperatively achieve the same objectives of GENEX against a stationary target through the incorporation of a cooperative trajectory shaping guidance law called Impact Time and Angle Control Guidance (ITACG). ITACG allows a salvo of missile to simultaneously hit a stationary target at a prescribed impact angle and impact time. This predetermined impact time is what allows each missile involved in the salvo attack to simultaneously arrived at the target with unique approach angles, which greatly increases the probability of success against well defended targets. GENEX-ITACG further increases this probability of kill by allowing each missile to approach the target with a unique approach angle rate through the use of a user design parameter. The incorporation of ITACG into GENEX is accomplished through the use of linear optimal control by casting the cost function of GENEX into the formulation of ITACG. The feasibility GENEXITACG is demonstrated across three scenarios that demonstrate the ITACG portion of the guidance law, the GENEX portion of the guidance law, and finally the entirety of the guidance law. The results indicate that GENEX-ITACG is able to successfully guide a salvo of missiles to simultaneously hit a stationary target at a predefined terminal impact angle and impact time, while also allowing the user to adjust the aggressiveness of approach.

Page generated in 0.0964 seconds