• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Schwache Randwertprobleme von Systemen elliptischen Charakters auf konischen Gebieten / Weak boundary value problems of linear elliptic systems on conical domains

Winkler, Ralf January 2008 (has links) (PDF)
In der vorliegenden Arbeit werden lineare Systeme elliptischer partieller Differentialgleichungen in schwacher Formulierung auf konischen Gebieten untersucht. Auf einem zunächst unbeschränkten Kegelgebiet betrachten wir den Fall beschränkter und nur von den Winkelvariablen abhängiger Koeffizientenfunktionen. Die durch selbige definierte Bilinearform genüge einer Gårdingschen Ungleichung. In gewichteten Sobolevräumen werden Existenz- und Eindeutigkeitsfragen geklärt, wobei das Problem mittels Fouriertransformation auf eine von einem komplexen Parameter abhängige Familie T(·) von Fredholmoperatoren zurückgeführt wird. Unter Anwendung des Residuenkalküls gewinnen wir eine Darstellung der Lösung in Form einer Zerlegung in einen glatten Anteil einerseits sowie eine endliche Summe von Singulärfunktionen andererseits. Durch Abschneidetechniken werden die gewonnenen Erkenntnisse auf den Fall schwach formulierter elliptischer Systeme auf beschränkten Kegelgebieten unter Formulierung in gewöhnlichen, nicht-gewichteten Sobolevräumen angewendet. Die für Regularitätsfragen maßgeblichen Eigenwerte der Operatorfunktion T mit minimalem positiven Imaginärteil werden im letzten Kapitel der Arbeit am Beispiel der ebenen elastischen Gleichungen numerisch bestimmt. / In the present PhD thesis we investigate systems of linear partial elliptic equations in weak formulation on conical domains. For an unbounded cone, first, we study the case of bounded and radially constant coefficient functions. The so defined bilinear form is supposed to satisfy a (local) Gårding inequality. In weighted Sobolev spaces we study questions of existence and uniqueness of solutions. In this context the problem is Fourier-transformed onto a set of smaller problems, represented by Fredholm operators T(·) that holomorphically depend on a complex parameter. Via the residual theorem we yield a decomposition of the solution into a regular part and a finite sum of singular functions. Using cut-off techniques we are able to transfer the preceeding results onto the case of weak formulated linear elliptic systems on bounded cones under restriction to usual, non weighted Sobolev spaces. In the last chapter, the eigenvalues of T with minimal positive imaginary part, which are responsible for regularity properties, are numeriaclly determined for the example of the plane Elastic Equations.

Page generated in 0.1023 seconds