• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conditional stability estimates for ill-posed PDE problems by using interpolation

Tautenhahn, Ulrich, Hämarik, Uno, Hofmann, Bernd, Shao, Yuanyuan 06 September 2011 (has links) (PDF)
The focus of this paper is on conditional stability estimates for ill-posed inverse problems in partial differential equations. Conditional stability estimates have been obtained in the literature by a couple different methods. In this paper we propose a method called interpolation method, which is based on interpolation in variable Hilbert scales. We are going to work out the theoretical background of this method and show that optimal conditional stability estimates are obtained. The capability of our method is illustrated by a comprehensive collection of different inverse and ill-posed PDE problems containing elliptic and parabolic problems, one source problem and the problem of analytic continuation.
2

Conditional stability estimates for ill-posed PDE problems by using interpolation

Tautenhahn, Ulrich, Hämarik, Uno, Hofmann, Bernd, Shao, Yuanyuan January 2011 (has links)
The focus of this paper is on conditional stability estimates for ill-posed inverse problems in partial differential equations. Conditional stability estimates have been obtained in the literature by a couple different methods. In this paper we propose a method called interpolation method, which is based on interpolation in variable Hilbert scales. We are going to work out the theoretical background of this method and show that optimal conditional stability estimates are obtained. The capability of our method is illustrated by a comprehensive collection of different inverse and ill-posed PDE problems containing elliptic and parabolic problems, one source problem and the problem of analytic continuation.

Page generated in 0.1261 seconds