Spelling suggestions: "subject:"inkorrekt gestellten botprobleme"" "subject:"inkorrekt gestellten darmprobleme""
1 |
Regularizability of ill-posed problems and the modulus of continuityBot, Radu Ioan, Hofmann, Bernd, Mathe, Peter 17 October 2011 (has links) (PDF)
The regularization of linear ill-posed problems is based on their conditional well-posedness when restricting the problem to certain classes of solutions. Given such class one may consider several related real-valued functions, which measure the wellposedness of the problem on such class. Among those functions the modulus of continuity is best studied. For solution classes which enjoy the additional feature of being star-shaped at zero, the authors develop a series of results with focus on continuity properties of the modulus of continuity. In particular it is highlighted that the problem is conditionally well-posed if and only if the modulus of continuity is right-continuous at zero. Those results are then applied to smoothness classes in Hilbert space. This study concludes with a new perspective on a concavity problem for the modulus of continuity, recently addressed by two of the authors in "Some note on the modulus of continuity for ill-posed problems in Hilbert space", 2011.
|
2 |
Regularizability of ill-posed problems and the modulus of continuityBot, Radu Ioan, Hofmann, Bernd, Mathe, Peter January 2011 (has links)
The regularization of linear ill-posed problems is based on their conditional well-posedness when restricting the problem to certain classes of solutions. Given such class one may consider several related real-valued functions, which measure the wellposedness of the problem on such class. Among those functions the modulus of continuity is best studied. For solution classes which enjoy the additional feature of being star-shaped at zero, the authors develop a series of results with focus on continuity properties of the modulus of continuity. In particular it is highlighted that the problem is conditionally well-posed if and only if the modulus of continuity is right-continuous at zero. Those results are then applied to smoothness classes in Hilbert space. This study concludes with a new perspective on a concavity problem for the modulus of continuity, recently addressed by two of the authors in "Some note on the modulus of continuity for ill-posed problems in Hilbert space", 2011.
|
3 |
Parameter choice in Banach space regularization under variational inequalitiesHofmann, Bernd, Mathé, Peter 17 April 2012 (has links) (PDF)
The authors study parameter choice strategies for Tikhonov regularization of nonlinear ill-posed problems in Banach spaces. The effectiveness of any parameter choice for obtaining convergence rates depend on the interplay of the solution smoothness and the nonlinearity structure, and it can be expressed concisely in terms of variational inequalities. Such inequalities are link conditions between the penalty term, the norm misfit and the corresponding error measure. The parameter choices under consideration include an a priori choice, the discrepancy principle as well as the Lepskii principle. For the convenience of the reader the authors review in an appendix a few instances where the validity of a variational inequality can be established.
|
4 |
Parameter choice in Banach space regularization under variational inequalitiesHofmann, Bernd, Mathé, Peter January 2012 (has links)
The authors study parameter choice strategies for Tikhonov regularization of nonlinear ill-posed problems in Banach spaces. The effectiveness of any parameter choice for obtaining convergence rates depend on the interplay of the solution smoothness and the nonlinearity structure, and it can be expressed concisely in terms of variational inequalities. Such inequalities are link conditions between the penalty term, the norm misfit and the corresponding error measure. The parameter choices under consideration include an a priori choice, the discrepancy principle as well as the Lepskii principle. For the convenience of the reader the authors review in an appendix a few instances where the validity of a variational inequality can be established.
|
5 |
The impact of a curious type of smoothness conditions on convergence rates in l1-regularizationBot, Radu Ioan, Hofmann, Bernd 31 January 2013 (has links) (PDF)
Tikhonov-type regularization of linear and nonlinear ill-posed problems in abstract spaces under sparsity constraints gained relevant attention in the past years. Since under some weak assumptions all regularized solutions are sparse if the l1-norm is used as penalty term, the l1-regularization was studied by numerous authors although the non-reflexivity of the Banach space l1 and the fact that such penalty functional is not strictly convex lead to serious difficulties. We consider the case that the sparsity assumption is narrowly missed. This means that the solutions may have an infinite number of nonzero but fast decaying components. For that case we formulate and prove convergence rates results for the l1-regularization of nonlinear operator equations. In this context, we outline the situations of Hölder rates and of an exponential decay of the solution components.
|
6 |
Conditional stability estimates for ill-posed PDE problems by using interpolationTautenhahn, Ulrich, Hämarik, Uno, Hofmann, Bernd, Shao, Yuanyuan 06 September 2011 (has links) (PDF)
The focus of this paper is on conditional stability estimates for ill-posed inverse problems in partial differential equations. Conditional stability estimates have been obtained in the literature by a couple different methods. In this paper we propose a method called interpolation method, which is based on interpolation in variable Hilbert scales. We are going to work out the theoretical background of this method and show that optimal conditional stability estimates are obtained. The capability of our method is illustrated by a comprehensive collection of different inverse and ill-posed PDE problems containing elliptic and parabolic problems, one source problem and the problem of analytic continuation.
|
7 |
Conditional stability estimates for ill-posed PDE problems by using interpolationTautenhahn, Ulrich, Hämarik, Uno, Hofmann, Bernd, Shao, Yuanyuan January 2011 (has links)
The focus of this paper is on conditional stability estimates for ill-posed inverse problems in partial differential equations. Conditional stability estimates have been obtained in the literature by a couple different methods. In this paper we propose a method called interpolation method, which is based on interpolation in variable Hilbert scales. We are going to work out the theoretical background of this method and show that optimal conditional stability estimates are obtained. The capability of our method is illustrated by a comprehensive collection of different inverse and ill-posed PDE problems containing elliptic and parabolic problems, one source problem and the problem of analytic continuation.
|
8 |
The impact of a curious type of smoothness conditions on convergence rates in l1-regularizationBot, Radu Ioan, Hofmann, Bernd January 2013 (has links)
Tikhonov-type regularization of linear and nonlinear ill-posed problems in abstract spaces under sparsity constraints gained relevant attention in the past years. Since under some weak assumptions all regularized solutions are sparse if the l1-norm is used as penalty term, the l1-regularization was studied by numerous authors although the non-reflexivity of the Banach space l1 and the fact that such penalty functional is not strictly convex lead to serious difficulties. We consider the case that the sparsity assumption is narrowly missed. This means that the solutions may have an infinite number of nonzero but fast decaying components. For that case we formulate and prove convergence rates results for the l1-regularization of nonlinear operator equations. In this context, we outline the situations of Hölder rates and of an exponential decay of the solution components.
|
Page generated in 0.0626 seconds