• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • Tagged with
  • 12
  • 12
  • 12
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Variational Estimators in Statistical Multiscale Analysis

Li, Housen 17 February 2016 (has links)
No description available.
2

Optimal rates for Lavrentiev regularization with adjoint source conditions

Plato, Robert, Mathé, Peter, Hofmann, Bernd 10 March 2016 (has links) (PDF)
There are various ways to regularize ill-posed operator equations in Hilbert space. If the underlying operator is accretive then Lavrentiev regularization (singular perturbation) is an immediate choice. The corresponding convergence rates for the regularization error depend on the given smoothness assumptions, and for general accretive operators these may be both with respect to the operator or its adjoint. Previous analysis revealed different convergence rates, and their optimality was unclear, specifically for adjoint source conditions. Based on the fundamental study by T. Kato, Fractional powers of dissipative operators. J. Math. Soc. Japan, 13(3):247--274, 1961, we establish power type convergence rates for this case. By measuring the optimality of such rates in terms on limit orders we exhibit optimality properties of the convergence rates, for general accretive operators under direct and adjoint source conditions, but also for the subclass of nonnegative selfadjoint operators.
3

Realization of source conditions for linear ill-posed problems by conditional stability

Hofmann, Bernd, Yamamoto, Masahiro 19 May 2008 (has links) (PDF)
We prove some sufficient conditions for obtaining convergence rates in regularization of linear ill-posed problems in a Hilbert space setting and show that these conditions are directly related with the conditional stability in several concrete inverse problems for partial differential equations.
4

Local Ill-Posedness and Source Conditions of Operator Equations in Hilbert Spaces

Hofmann, B., Scherzer, O. 30 October 1998 (has links) (PDF)
The characterization of the local ill-posedness and the local degree of nonlinearity are of particular importance for the stable solution of nonlinear ill-posed problems. We present assertions concerning the interdependence between the ill-posedness of the nonlinear problem and its linearization. Moreover, we show that the concept of the degree of nonlinearity com bined with source conditions can be used to characterize the local ill-posedness and to derive a posteriori estimates for nonlinear ill-posed problems. A posteriori estimates are widely used in finite element and multigrid methods for the solution of nonlinear partial differential equations, but these techniques are in general not applicable to inverse an ill-posed problems. Additionally we show for the well-known Landweber method and the iteratively regularized Gauss-Newton method that they satisfy a posteriori estimates under source conditions; this can be used to prove convergence rates results.
5

Convergence rates for variational regularization of statistical inverse problems

Sprung, Benjamin 04 October 2019 (has links)
No description available.
6

Realization of source conditions for linear ill-posed problems by conditional stability

Hofmann, Bernd, Yamamoto, Masahiro 19 May 2008 (has links)
We prove some sufficient conditions for obtaining convergence rates in regularization of linear ill-posed problems in a Hilbert space setting and show that these conditions are directly related with the conditional stability in several concrete inverse problems for partial differential equations.
7

Optimal rates for Lavrentiev regularization with adjoint source conditions

Plato, Robert, Mathé, Peter, Hofmann, Bernd January 2016 (has links)
There are various ways to regularize ill-posed operator equations in Hilbert space. If the underlying operator is accretive then Lavrentiev regularization (singular perturbation) is an immediate choice. The corresponding convergence rates for the regularization error depend on the given smoothness assumptions, and for general accretive operators these may be both with respect to the operator or its adjoint. Previous analysis revealed different convergence rates, and their optimality was unclear, specifically for adjoint source conditions. Based on the fundamental study by T. Kato, Fractional powers of dissipative operators. J. Math. Soc. Japan, 13(3):247--274, 1961, we establish power type convergence rates for this case. By measuring the optimality of such rates in terms on limit orders we exhibit optimality properties of the convergence rates, for general accretive operators under direct and adjoint source conditions, but also for the subclass of nonnegative selfadjoint operators.
8

The impact of a curious type of smoothness conditions on convergence rates in l1-regularization

Bot, Radu Ioan, Hofmann, Bernd 31 January 2013 (has links) (PDF)
Tikhonov-type regularization of linear and nonlinear ill-posed problems in abstract spaces under sparsity constraints gained relevant attention in the past years. Since under some weak assumptions all regularized solutions are sparse if the l1-norm is used as penalty term, the l1-regularization was studied by numerous authors although the non-reflexivity of the Banach space l1 and the fact that such penalty functional is not strictly convex lead to serious difficulties. We consider the case that the sparsity assumption is narrowly missed. This means that the solutions may have an infinite number of nonzero but fast decaying components. For that case we formulate and prove convergence rates results for the l1-regularization of nonlinear operator equations. In this context, we outline the situations of Hölder rates and of an exponential decay of the solution components.
9

About a deficit in low order convergence rates on the example of autoconvolution

Bürger, Steven, Hofmann, Bernd 18 December 2013 (has links) (PDF)
We revisit in L2-spaces the autoconvolution equation x ∗ x = y with solutions which are real-valued or complex-valued functions x(t) defined on a finite real interval, say t ∈ [0,1]. Such operator equations of quadratic type occur in physics of spectra, in optics and in stochastics, often as part of a more complex task. Because of their weak nonlinearity deautoconvolution problems are not seen as difficult and hence little attention is paid to them wrongly. In this paper, we will indicate on the example of autoconvolution a deficit in low order convergence rates for regularized solutions of nonlinear ill-posed operator equations F(x)=y with solutions x† in a Hilbert space setting. So for the real-valued version of the deautoconvolution problem, which is locally ill-posed everywhere, the classical convergence rate theory developed for the Tikhonov regularization of nonlinear ill-posed problems reaches its limits if standard source conditions using the range of F (x† )∗ fail. On the other hand, convergence rate results based on Hölder source conditions with small Hölder exponent and logarithmic source conditions or on the method of approximate source conditions are not applicable since qualified nonlinearity conditions are required which cannot be shown for the autoconvolution case according to current knowledge. We also discuss the complex-valued version of autoconvolution with full data on [0,2] and see that ill-posedness must be expected if unbounded amplitude functions are admissible. As a new detail, we present situations of local well-posedness if the domain of the autoconvolution operator is restricted to complex L2-functions with a fixed and uniformly bounded modulus function.
10

Local Ill-Posedness and Source Conditions of Operator Equations in Hilbert Spaces

Hofmann, B., Scherzer, O. 30 October 1998 (has links)
The characterization of the local ill-posedness and the local degree of nonlinearity are of particular importance for the stable solution of nonlinear ill-posed problems. We present assertions concerning the interdependence between the ill-posedness of the nonlinear problem and its linearization. Moreover, we show that the concept of the degree of nonlinearity com bined with source conditions can be used to characterize the local ill-posedness and to derive a posteriori estimates for nonlinear ill-posed problems. A posteriori estimates are widely used in finite element and multigrid methods for the solution of nonlinear partial differential equations, but these techniques are in general not applicable to inverse an ill-posed problems. Additionally we show for the well-known Landweber method and the iteratively regularized Gauss-Newton method that they satisfy a posteriori estimates under source conditions; this can be used to prove convergence rates results.

Page generated in 0.103 seconds