• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 291
  • 49
  • 6
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 348
  • 348
  • 281
  • 177
  • 151
  • 91
  • 62
  • 56
  • 55
  • 55
  • 52
  • 51
  • 50
  • 47
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

[en] A MACHINE LEARNING APPROACH FOR PORTUGUESE TEXT CHUNKING / [pt] UMA ABORDAGEM DE APRENDIZADO DE MÁQUINA PARA SEGMENTAÇÃO TEXTUAL NO PORTUGUÊS

GUILHERME CARLOS DE NAPOLI FERREIRA 10 February 2017 (has links)
[pt] A segmentação textual é uma tarefa de Processamento de Linguagem Natural muito relevante, e consiste na divisão de uma sentença em sequências disjuntas de palavras sintaticamente relacionadas. Um dos fatores que contribuem fortemente para sua importância é que seus resultados são usados como significativos dados de entrada para problemas linguísticos mais complexos. Dentre esses problemas estão a análise sintática completa, a identificação de orações, a análise sintática de dependência, a identificação de papéis semânticos e a tradução automática. Em particular, abordagens de Aprendizado de Máquina para estas tarefas beneficiam-se intensamente com o uso de um atributo de segmentos textuais. Um número respeitável de eficazes estratégias de extração de segmentos para o inglês foi apresentado ao longo dos últimos anos. No entanto, até onde podemos determinar, nenhum estudo abrangente foi feito sobre a segmentação textual para o português, de modo a demonstrar seus benefícios. O escopo deste trabalho é a língua portuguesa, e seus objetivos são dois. Primeiramente, analisamos o impacto de diferentes definições de segmentação, utilizando uma heurística para gerar segmentos que depende de uma análise sintática completa previamente anotada. Em seguida, propomos modelos de Aprendizado de Máquina para a extração de segmentos textuais baseados na técnica Aprendizado de Transformações Guiado por Entropia. Fazemos uso do corpus Bosque, do projeto Floresta Sintá(c)tica, nos nossos experimentos. Utilizando os valores determinados diretamente por nossa heurística, um atributo de segmentos textuais aumenta a métrica F beta igual 1 de um sistema de identificação de orações para o português em 6.85 e a acurácia de um sistema de análise sintática de dependência em 1.54. Ademais, nosso melhor extrator de segmentos apresenta um F beta igual 1 de 87.95 usando anotaçoes automáticas de categoria gramatical. As descobertas indicam que, de fato, a informação de segmentação textual derivada por nossa heurística é relevante para tarefas mais elaboradas cujo foco é o português. Além disso, a eficácia de nossos extratores é comparável à dos similares do estado-da-arte para o inglês, tendo em vista que os modelos propostos são razoavelmente simples. / [en] Text chunking is a very relevant Natural Language Processing task, and consists in dividing a sentence into disjoint sequences of syntactically correlated words. One of the factors that highly contribute to its importance is that its results are used as a significant input to more complex linguistic problems. Among those problems we have full parsing, clause identification, dependency parsing, semantic role labeling and machine translation. In particular, Machine Learning approaches to these tasks greatly benefit from the use of a chunk feature. A respectable number of effective chunk extraction strategies for the English language has been presented during the last few years. However, as far as we know, no comprehensive study has been done on text chunking for Portuguese, showing its benefits. The scope of this work is the Portuguese language, and its objective is twofold. First, we analyze the impact of different chunk definitions, using a heuristic to generate chunks that relies on previous full parsing annotation. Then, we propose Machine Learning models for chunk extraction based on the Entropy Guided Transformation Learning technique. We employ the Bosque corpus, from the Floresta Sintá(c)tica project, for our experiments. Using golden values determined by our heuristic, a chunk feature improves the F beta equal 1 score of a clause identification system for Portuguese by 6.85 and the accuracy of a dependency parsing system by 1.54. Moreover, our best chunk extractor achieves a F beta equal 1 of 87.95 when automatic part-of-speech tags are applied. The empirical findings indicate that, indeed, chunk information derived by our heuristic is relevant to more elaborate tasks targeted on Portuguese. Furthermore, the effectiveness of our extractors is comparable to the state-of-the-art similars for English, taking into account that our proposed models are reasonably simple.
292

Indução de filtros lingüisticamente motivados na recuperação de informação / Linguistically motivated filter induction in information retrieval

João Marcelo Azevedo Arcoverde 17 April 2007 (has links)
Apesar dos processos de recuperação e filtragem de informação sempre terem usado técnicas básicas de Processamento de Linguagem Natural (PLN) no suporte à estruturação de documentos, ainda são poucas as indicações sobre os avanços relacionados à utilização de técnicas mais sofisticadas de PLN que justifiquem o custo de sua utilização nestes processos, em comparação com as abordagens tradicionais. Este trabalho investiga algumas evidências que fundamentam a hipótese de que a aplicação de métodos que utilizam conhecimento linguístico é viável, demarcando importantes contribuições para o aumento de sua eficiência em adição aos métodos estatásticos tradicionais. É proposto um modelo de representação de texto fundamentado em sintagmas nominais, cuja representatividade de seus descritores é calculada utilizando-se o conceito de evidência, apoiado em métodos estatísticos. Filtros induzidos a partir desse modelo são utilizados para classificar os documentos recuperados analisando-se a relevância implícita no perfil do usuário. O aumento da precisão (e, portanto, da eficácia) em sistemas de Recuperação de Informação, conseqüência da pós-filtragem seletiva de informações, demonstra uma clara evidência de como o uso de técnicas de PLN pode auxiliar a categorização de textos, abrindo reais possibilidades para o aprimoramento do modelo apresentado / Although Information Retrieval and Filtering tasks have always used basic Natural Language Processing (NLP) techniques for supporting document structuring, there is still space for more sophisticated NLP techniques which justify their cost when compared to the traditional approaches. This research aims to investigate some evidences that justify the hypothesis on which the use of linguistic-based methods is feasible and can bring on relevant contributions to this area. In this work noun phrases of a text are used as descriptors whose evidence is calculated by statistical methods. Filters are then induced to classify the retrieved documents by measuring their implicit relevance presupposed by an user profile. The increase of precision (efficacy) in IR systems as a consequence of the use of NLP techniques for text classification in the filtering task is an evidence of how this approach can be further explored
293

Reconhecimento de entidades mencionadas em português utilizando aprendizado de máquina / Portuguese named entity recognition using machine learning

Wesley Seidel Carvalho 24 February 2012 (has links)
O Reconhecimento de Entidades Mencionadas (REM) é uma subtarefa da extração de informações e tem como objetivo localizar e classificar elementos do texto em categorias pré-definidas tais como nome de pessoas, organizações, lugares, datas e outras classes de interesse. Esse conhecimento obtido possibilita a execução de outras tarefas mais avançadas. O REM pode ser considerado um dos primeiros passos para a análise semântica de textos, além de ser uma subtarefa crucial para sistemas de gerenciamento de documentos, mineração de textos, extração da informação, entre outros. Neste trabalho, estudamos alguns métodos de Aprendizado de Máquina aplicados na tarefa de REM que estão relacionados ao atual estado da arte, dentre eles, dois métodos aplicados na tarefa de REM para a língua portuguesa. Apresentamos três diferentes formas de avaliação destes tipos de sistemas presentes na literatura da área. Além disso, desenvolvemos um sistema de REM para língua portuguesa utilizando Aprendizado de Máquina, mais especificamente, o arcabouço de máxima entropia. Os resultados obtidos com o nosso sistema alcançaram resultados equiparáveis aos melhores sistemas de REM para a língua portuguesa desenvolvidos utilizando outras abordagens de aprendizado de máquina. / Named Entity Recognition (NER), a task related to information extraction, aims to classify textual elements according to predefined categories such as names, places, dates etc. This enables the execution of more advanced tasks. NER is a first step towards semantic textual analysis and is also a crucial task for systems of information extraction and other types of systems. In this thesis, I analyze some Machine Learning methods applied to NER tasks, including two methods applied to Portuguese language. I present three ways of evaluating these types of systems found in the literature. I also develop an NER system for the Portuguese language utilizing Machine Learning that entails working with a maximum entropy framework. The results are comparable to the best NER systems for the Portuguese language developed with other Machine Learning alternatives.
294

[en] BUILDING AND EVALUATING A GOLD-STANDARD TREEBANK / [pt] CONSTRUÇÃO E AVALIAÇÃO DE UM TREEBANK PADRÃO OURO

ELVIS ALVES DE SOUZA 29 May 2023 (has links)
[pt] Esta dissertação apresenta o processo de desenvolvimento do PetroGold, um corpus anotado com informação morfossintática – um treebank – padrão ouro para o domínio do petróleo. O desenvolvimento do recurso é abordado sob duas lentes: do lado linguístico, estudamos a literatura gramatical e tomamos decisões linguisticamente motivadas para garantir a qualidade da anotação do corpus; do lado computacional, avaliamos o recurso considerando a sua utilidade para o processamento de linguagem natural (PLN). Recursos como o PetroGold recebem relevância especial no contexto atual, em que o PLN estatístico tem se beneficiado de recursos padrão ouro de domínios específicos para alimentar o aprendizado automático. No entanto, o treebank é útil também para tarefas como a avaliação de sistemas de anotação baseados em regras e para os estudos linguísticos. O PetroGold foi anotado segundo as diretivas do projeto Universal Dependencies, tendo como pressupostos a ideia de que a anotação de um corpus é um processo interpretativo, por um lado, e utilizando o paradigma da linguística empírica, por outro. Além de descrever a anotação propriamente, aplicamos alguns métodos para encontrar erros na anotação de treebanks e apresentamos uma ferramenta criada especificamente para busca, edição e avaliação de corpora anotados. Por fim, avaliamos o impacto da revisão de cada uma das categorias linguísticas do treebank no aprendizado automático de um modelo alimentado pelo PetroGold e disponibilizamos publicamente a terceira versão do corpus, a qual, quando submetida à avaliação intrínseca de um modelo, alcança métricas até 2,55 por cento melhores que a versão anterior. / [en] This thesis reports on the development process of PetroGold, a goldstandard annotated corpus with morphosyntactic information – a treebank – for the oil and gas domain. The development of the resource is seen from two perspectives: on the linguistic side, we study the grammatical literature and make linguistically motivated decisions to ensure the quality of corpus annotation; on the computational side, we evaluate the resource considering its usefulness for natural language processing (NLP). Resources like PetroGold receive special importance in the current context, where statistical NLP has benefited from domain-specific gold-standard resources to train machine learning models. However, the treebank is also useful for tasks such as evaluating rule-based annotation systems and for linguistic studies. PetroGold was annotated according to the guidelines of the Universal Dependencies project, having as theoretical assumptions the idea that the annotation of a corpus is an interpretative process, on the one hand, and using the empirical linguistics paradigm, on the other. In addition to describing the annotation itself, we apply some methods to find errors in the annotation of treebanks and present a tool created specifically for searching, editing and evaluating annotated corpora. Finally, we evaluate the impact of revising each of the treebank linguistic categories on the automatic learning of a model powered by PetroGold and make the third version of the corpus publicly available, which, when performing an intrinsic evaluation for a model using the corpus, achieves metrics up to 2.55 perecent better than the previous version.
295

[en] LER: ANNOTATION AND AUTOMATIC CLASSIFICATION OF ENTITIES AND RELATIONS / [pt] LER: ANOTAÇÃO E CLASSIFICAÇÃO AUTOMÁTICA DE ENTIDADES E RELAÇÕES

JONATAS DOS SANTOS GROSMAN 30 November 2017 (has links)
[pt] Diversas técnicas para extração de informações estruturadas de dados em linguagem natural foram desenvolvidas e demonstraram resultados muito satisfatórios. Entretanto, para obterem tais resultados, requerem uma série de atividades que geralmente são feitas de modo isolado, como a anotação de textos para geração de corpora, etiquetamento morfossintático, engenharia e extração de atributos, treinamento de modelos de aprendizado de máquina etc., o que torna onerosa a extração dessas informações, dado o esforço e tempo a serem investidos. O presente trabalho propõe e desenvolve uma plataforma em ambiente web, chamada LER (Learning Entities and Relations) que integra o fluxo necessário para essas atividades, com uma interface que visa a facilidade de uso. Outrossim, o trabalho mostra os resultados da implementação e uso da plataforma proposta. / [en] Many techniques for the structured information extraction from natural language data have been developed and have demonstrated their potentials yielding satisfactory results. Nevertheless, to obtain such results, they require some activities that are usually done separately, such as text annotation to generate corpora, Part-Of- Speech tagging, features engineering and extraction, machine learning models training etc., making the information extraction task a costly activity due to the effort and time spent on this. The present work proposes and develops a web based platform called LER (Learning Entities and Relations), that integrates the needed workflow for these activities, with an interface that aims the ease of use. The work also shows the platform implementation and its use.
296

[en] RES-RISK-ONTO: AN APPLICATION ONTOLOGY FOR RISKS IN THE PETROLEUM RESERVOIR DOMAIN / [pt] RES-RISK-ONTO: UMA ONTOLOGIA DE APLICAÇÃO PARA RISCOS NO DOMÍNIO DE RESERVATÓRIOS DE PETRÓLEO

PATRICIA FERREIRA DA SILVA 12 May 2022 (has links)
[pt] Este trabalho apresenta a Reservoir Risks Ontology (ResRiskOnto), uma ontologia aplicada aos riscos na indústria de óleo e gás associados ao domínio de reservatórios. Os componentes da ResRiskOnto são termos do domínio de trabalho de profissinais de reservatório, de forma a facilitar sua adoção na documentação futura de riscos. A ResRiskOnto tem como ideia central o conceito de Evento de Risco. Cada evento tem um conjunto de possíveis Participantes, que por sua vez possuem Características manifestadas pelo evento. A ontologia dispõe de um total de 97 termos, 29 dos quais derivados da classe Evento de Risco. Para desenvolver a ResRiskOnto, foi feita uma análise semântica em aproximadamente 2500 riscos de reservatórios documentados em linguagem natural. Este repositório é fruto de centenas de workshops de avaliação de riscos em projetos de óleo e gás, conduzidos na Petrobras durante uma década. A ontologia proposta fundamenta-se nos princípios da Basic Formal Ontology (BFO), uma ontologia de topo projetada para descrever domínios científicos. A BFO baseia-se no Realismo, uma visão filosófica segundo a qual os entes que constituem a realidade existem independentemente da nossa representação. No nível de domínio definimos os entes de reservatório usando os conceitos da GeoCore Ontology, uma ontologia para a Geologia. Para validar a ResRiskOnto os documentos do repositório foram anotados utilizando os entes e relações definidos na ontologia, e desenvolvido um modelo capaz de reconhecer entidades nomeadas e extrair as relações entre elas. Nossa contribuição é uma ontologia aplicada que permite o raciocínio semântico no repositório de documentos de risco. Esperamos que ela forneça (i) as bases para modelagem de dados de riscos relacionados a reservatórios; e (ii) um padrão para futura documentação de riscos no domínio de reservatório. / [en] This work proposes the Reservoir Risks Ontology (ResRiskOnto), an application ontology for risks in the oil and gas industry associated with the petroleum reservoir domain. ResRiskOnto s building blocks are terms dominated by reservoir professionals, so that it can be easily adopted in future risk documentation. ResRiskOnto is developed having at its center the concept of Risk Events. Each event has a set of possible Participants, that have its Characteristics manifested by the event. The ontology provides a total a set of 97 terms, 29 of which are derived from the Risk Event class. To develop the ResRiskOnto, we conducted a semantic analysis of documents that contain over 2500 reservoir-related risks described in natural language. This repository is the result of hundreds of risk assessment workshops in oil and gas projects, conducted in over ten years in Petrobras. This ontology is founded on the principles of the Basic Formal Ontology (BFO), a top-level ontology designed to describe scientific domains. One of BFO s most distinct characteristic is its commitment to Realism, a philosophical view of reality in which its constituents exist independently of our representations. On the domain-level, reservoir entities are described under the principles of the GeoCore Ontology, a core ontology for Geology. To validate the ResRiskOnto we annotate our risk documents repository with the ontology s entities and relations, developing a model that recognizes named entities and extracts the relations among them. Our contribution is an application ontology that allows semantic reasoning over the risk documents. We also expect to provide (i) a basis for data modelling in the case of reservoir-related risks; and (ii) a standard for future risk documentation in the reservoir domain.
297

[en] CORPUS FOR ACADEMIC DOMAIN: MODELS AND APPLICATIONS / [pt] CORPUS PARA O DOMÍNIO ACADÊMICO: MODELOS E APLICAÇÕES

IVAN DE JESUS PEREIRA PINTO 16 November 2021 (has links)
[pt] Dados acadêmicos (e.g., Teses, Dissertações) englobam aspectos de toda uma sociedade, bem como seu conhecimento científico. Neles, há uma riqueza de informações a ser explorada por modelos computacionais, e que podem ser positivos para sociedade. Os modelos de aprendizado de máquina, em especial, possuem uma crescente necessidade de dados para treinamento, que precisam ser estruturados e de tamanho considerável. Seu uso na área de processamento de linguagem natural é pervasivo nas mais diversas tarefas. Este trabalho realiza o esforço de coleta, construção, análise do maior corpus acadêmico conhecido na língua portuguesa. Foram treinados modelos de vetores de palavras, bag-of-words e transformer. O modelo transformer BERTAcadêmico apresentou os melhores resultados, com 77 por cento de f1-score na classificação da Grande Área de conhecimento e 63 por cento de f1-score na classificação da Área de conhecimento nas categorizações de Teses e Dissertações. É feita ainda uma análise semântica do corpus acadêmico através da modelagem de tópicos, e uma visualização inédita das áreas de conhecimento em forma de clusters. Por fim, é apresentada uma aplicação que faz uso dos modelos treinados, o SucupiraBot. / [en] Academic data (i.e., Thesis, Dissertation) encompasses aspects of a whole society, as well as its scientific knowledge. There is a wealth of information to be explored by computational models, and that can be positive for society. Machine learning models in particular, have an increasing need for training data, that are efficient and of considerable size. Its use in the area of natural language processing (NLP) is pervasive in many different tasks. This work makes the effort of collecting, constructing, analyzing and training of models for the biggest known academic corpus in the Portuguese language. Word embeddings, bag of words and transformers models have been trained. The Bert-Academico has shown the better result, with 77 percent of f1-score in Great area of knowledge and 63 percent in knowledge area classification of Thesis and Dissertation. A semantic analysis of the academic corpus is made through topic modelling, and an unprecedented visualization of the knowledge areas is presented. Lastly, an application that uses the trained models is showcased, the SucupiraBot.
298

[pt] APLICANDO APRENDIZADO DE MÁQUINA À SUPERVISÃO DO MERCADO DE CAPITAIS: CLASSIFICAÇÃO E EXTRAÇÃO DE INFORMAÇÕES DE DOCUMENTOS FINANCEIROS / [en] APPLYING MACHINE LEARNING TO CAPITAL MARKETS SUPERVISION: CLASSIFICATION AND INFORMATION EXTRACTION FROM FINANCIAL DOCUMENT

FREDERICO SHU 06 January 2022 (has links)
[pt] A análise de documentos financeiros não estruturados é uma atividade essencial para a supervisão do mercado de capitais realizada pela Comissão de Valores Mobiliários (CVM). Formas de automatização que reduzam o esforço humano despendido no processo de triagem de documentos são vitais para a CVM lidar com a escassez de recursos humanos e a expansão do mercado de valores mobiliários. Nesse contexto, a dissertação compara sistematicamente diversos algoritmos de aprendizado de máquina e técnicas de processamento de texto, a partir de sua aplicação em duas tarefas de processamento de linguagem natural – classificação de documentos e extração de informações – desempenhadas em ambiente real de supervisão de mercados. Na tarefa de classificação, os algoritmos clássicos proporcionaram melhor desempenho que as redes neurais profundas, o qual foi potencializado pela aplicação de técnicas de subamostragem e comitês de máquinas (ensembles). A precisão atual, estimada entre 20 por cento, e 40 por cento, pode ser aumentada para mais de 90 por cento, com a aplicação dos algoritmos testados. A arquitetura BERT foi capaz de extrair informações sobre aumento de capital e incorporação societária de documentos financeiros. Os resultados satisfatórios obtidos em ambas as tarefas motivam a implementação futura em regime de produção dos modelos estudados, sob a forma de um sistema de apoio à decisão. Outra contribuição da dissertação é o CVMCorpus, um corpus constituído para o escopo deste trabalho com documentos financeiros entregues por companhias abertas brasileiras à CVM entre 2009 e 2019, que abre possibilidades de pesquisa futura linguística e de finanças. / [en] The analysis of unstructured financial documents is key to the capital markets supervision performed by Comissão de Valores Mobiliários (Brazilian SEC or CVM). Systems capable of reducing human effort involved in the task of screening documents and outlining relevant information, for further manual review, are important tools for CVM to deal with the shortage of human resources and expansion of the Brazilian securities market. In this regard, this dissertation presents and discusses the application of several machine learning algorithms and text processing techniques to perform two natural language processing tasks— document classification and information extraction—in a real market supervision environment. In the classification exercise, classic algorithms achieved a better performance than deep neural networks, which was enhanced by applying undersampling techniques and ensembles. Using the tested algorithms can improve the current precision rate from 20 percent–40 percent to more than 90 percent. The BERT network architecture was able to extract information from financial documents on capital increase and mergers. The successful results obtained in both tasks encourage future implementation of the studied models in the form of a decision support system. Another contribution of this work is the CVMCorpus, a corpus built to produce datasets for the tasks, with financial documents released between 2009 and 2019 by Brazilian companies, which opens possibilities of future linguistic and finance research.
299

[en] IMPROVING THE QUALITY OF THE USER EXPERIENCE BY QUERY ANSWER MODIFICATION / [pt] MELHORANDO A QUALIDADE DA EXPERIÊNCIA DO USUÁRIO ATRAVÉS DA MODIFICAÇÃO DA RESPOSTA DA CONSULTA

JOAO PEDRO VALLADAO PINHEIRO 30 June 2021 (has links)
[pt] A resposta de uma consulta, submetida a um banco de dados ou base de conhecimento, geralmente é longa e pode conter dados redundantes. O usuário é frequentemente forçado a navegar por uma longa resposta, ou refinar e repetir a consulta até que a resposta atinja um tamanho gerenciável. Sem o tratamento adequado, consumir a resposta da consulta pode se tornar uma tarefa tediosa. Este estudo, então, propõe um processo que modifica a apresentação da resposta da consulta para melhorar a qualidade de experiência do usuário, no contexto de uma base de conhecimento RDF. O processo reorganiza a resposta da consulta original aplicando heurísticas para comprimir os resultados. A consulta SPARQL original é modificada e uma exploração sobre o conjunto de resultados começa através de uma navegação guiada sobre predicados e suas facetas. O artigo também inclui experimentos baseados em versões RDF do MusicBrainz, enriquecido com dados do DBpedia, e IMDb, cada um com mais de 200 milhões de triplas RDF. Os experimentos utilizam exemplos de consultas de benchmarks conhecidos. / [en] The answer of a query, submitted to a database or a knowledge base, is often long and may contain redundant data. The user is frequently forced to browse thru a long answer, or to refine and repeat the query until the answer reaches a manageable size. Without proper treatment, consuming the query answer may indeed become a tedious task. This study then proposes a process that modifies the presentation of a query answer to improve the quality of the user s experience, in the context of an RDF knowledge base. The process reorganizes the original query answer by applying heuristics to summarize the results. The original SPARQL query is modified and an exploration over the result set starts thru a guided navigation over predicates and its facets. The article also includes experiments based on RDF versions of MusicBrainz, enriched with DBpedia data, and IMDb, each with over 200 million RDF triples. The experiments use sample queries from well-known benchmarks.
300

[pt] MINERAÇÃO DE INFORMAÇÃO EM LINGUAGEM NATURAL PARA APOIAR A ELICITAÇÃO DE REQUISITOS / [en] MINING INFORMATION IN NATURAL LANGUAGE TO SUPPORT REQUIREMENTS ELICITATION

ROXANA LISETTE QUINTANILLA PORTUGAL 02 December 2016 (has links)
[pt] Este trabalho descreve a mineração de informações em linguagem natural a partir do repositório de projetos GitHub. É explicada como o conteúdo de projetos semelhantes dada uma busca por domínio podem ser úteis para o reuso de conhecimento, e assim, ajudar nas tarefas de Elicitação de Requisitos. Técnicas de mineração de textos, regularidades independentes do domínio, e os metadados de GitHub são os métodos utilizados para selecionar projetos relevantes e as informações dentro deles. Uma abordagem para atingir nossa meta utilizando pesquisa exploratória é explicada, bem como descrevemos os resultados alcançados. / [en] This work describes the mining of information in natural language from the GitHub repository. It is explained how the content of similar projects given a search domain can be useful for the reuse of knowledge, and thus help in the Requirements Elicitation tasks. Techniques of text mining, regularities independent from domain, and GitHub metadata are the methods used to select relevant projects and the information within them. One approach to achieve our goal is explained with an exploratory research and the results achieved.

Page generated in 0.0735 seconds