• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 11
  • 8
  • 5
  • 3
  • 3
  • 2
  • Tagged with
  • 88
  • 88
  • 24
  • 19
  • 17
  • 14
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Role of Plasma Membrane Calcium Atpase and its Association with Lipid Rafts in Chemoattraction in Paramecium

Pan, Yunfeng 06 June 2008 (has links)
Paramecium, a unicellular ciliate, can be attracted by various chemical stimuli. Chemoattractants such as glutamate, folate, cAMP, and acetate activate different receptor mediated signal transduction pathways. The final event in these signal transductions is a hyperpolarization of membrane potential, which makes Paramecium swim smoothly and fast. There is evidence that the effecter of this hyperpolarization is the plasma membrane calcium ATPase (PMCA), that when activated, expels Ca2+ from the cell. In Paramecium three PMCA isoforms, named PMCA2, 3, and 4, have been cloned. PMCA2 is associated with lipid rafts, which is demonstrated by its resistance to cold detergent solubilization and distribution in sucrose density gradients in ultracentrifugation. PMCA3 and 4 are not associated with lipid rafts. On the cell surface, PMCAs are localized to the bases of cilia. Sterol-depletion by methyl-ß-cyclodextrin (MßCD) treatment disrupts the distribution of PMCA2 in sucrose density gradients and ciliary base-localization on the cell surface. MßCD treatment also decreases the chemoattraction to glutamate and cAMP. This indicates that PMCA2 and its association with lipid rafts are essential in the chemoattraction signal transduction pathways. Based on these results, a model of membrane domains incorporating three signal transduction pathways is proposed.
2

Chacterization of Paramecium Tetraurelia Ciliary Membrane Plasma Membrane Calcium Pumps and Lipid Rafts

Ray, Koela 20 June 2008 (has links)
Paramecium, a ciliate, is an important model for studying Ca2+ signaling and understanding chemoreception and signal transduction. There are several proteins, such as plasma membrane calcium ATPases (PMCAs)/ calcium pumps, SERCA pumps, calmodulin and Ca2+ channels that play an important role in maintaining intracellular Ca2+ level and signaling in Paramecium. Isoform 2 of PMCA has been identified in both the cilia and pellicle membranes of Paramecium, the activity of which leads to hyperpolarization. Plasma and ciliary membrane of Paramecium is made up of a variety of sterols and sphingolipids which constitute lipid rafts, demonstrated by the presence of detergent resistant membranes and their distribution in sucrose and Optiprep density gradients. PMCAs are important markers of lipid rafts and PMCA 2 is found to be localized in lipid rafts of both the cilia and somatic membrane of Paramecium. Methyl-β-cyclodextrin treatment can remove up to 42% of sterols from pellicle membranes but only about 12% from cilia. Sterol depletion of pellicle perturbs the distribution of PMCA 2 and other raft proteins in pellicle which is not observed in cilia as evident from western blot analysis and immunomicroscopic studies. There is evidence that selection of gradient medium for study of lipid rafts and its associated proteins is very important in Paramecium. Glutamate receptors and adenylyl cyclase, the upstream molecules of the signal transduction pathway through PMCA have also been identified in cellular cilia, indicating that these raft molecules forms a platform for signaling in Paramecium cilia.
3

The role of lipid rafts in actin-mediated phagocytosis by macrophages

Magenau, Astrid Irmela, Centre for Vascular Research, Faculty of Medicine, UNSW January 2009 (has links)
The aim of this project was to investigate the role of lipid rafts in actin-mediated phagocytosis. Lipid rafts are defined as highly condensed membrane domains enriched in cholesterol and glycosphingolipids and are thought to participate in a range of cellular functions including actin-mediated phagocytosis. Remodelling of the actin skeleton facilitates the formation of a phagocytic membrane cup and drives the uptake of particles. Hence, actin restructuring is essential for phagocytosis. How engagement of Fc receptors triggers membrane re-organization at the site of phagocytosis and how the formation of ordered raft domains is linked to actin remodelling during phagosome maturation is currently not known. Lipid rafts potentially form platforms for local signal transduction for Fc surface receptors and secondary messengers. Raft distribution therefore would critically influence and direct their function. The hypothesis is that lipid rafts are the membrane sites on the cell surface, which enable, drive and localise actin- dependent phagocytosis. Phagocytosis in macrophages was induced with IgG-coated beads of different sizes as substrates for uptake via the Fc receptor mediated pathway. Membrane order was visualised and quantified by two-photon microscopy. Actin remodelling was imaged in parallel with confocal microscopy. Time-course and live cell imaging demonstrated that phagocytosis induces formation of highly ordered membrane domains around the phagocytic particle independently of the particle size. The high membrane order is the biophysical hallmark of lipid rafts suggested that Fc receptor cross-linking induces the coalescence of lipid rafts. Live-cell imaging further identified a temporal correlation between membrane condensation and actin restructuring at sites of phagocytosis. Membrane condensation persisted after actin detached from the sealed phagosome. Receptor clustering induced by particle binding activates Src kinases leading to tyrosine phosphorylation of ITAM motif of the receptors, activation of GTPases and actin polymerisation. Lipid raft recruitment may be driven by these events or alternatively, rafts be essential for kinase activation. Several inhibitors were used to interrupt crucial steps in the signalling cascade leading to actin restructuring. Laurdan microscopy showed that membrane order is independent of Lyn activation (inhibited with PP2), PI3K activity (inhibited with Wortmannin) and actin polymerisation (Latrunculin B). Inhibitors had differential effects on phagocytosis rates of small and large particles. Inhibition of Lyn had a more severe effect on phagocytosis of large beads than on phagocytosis of small beads. Disruption of PI3K activity with Wortmannin only inhibited phagocytosis of large but not of small particles, whereas disruption of the actin skeleton with Latrunculin B inhibited phagocytosis of small and large particles. These data suggest that membrane condensation is independent of kinase activity and occurs upstream of actin remodelling. The role of lipid rafts in phagocytosis was further investigated by modulation of sterol composition of the cell membranes. Cholesterol depletion with methyl-- cyclodextrin disrupted membrane organization at phagosomes of small and large beads and also abolished phagocytosis. However, the fluidity of the entire plasma membrane was increased upon treatment of cells with methyl--cyclodextrin suggesting that this condition was not specifically affecting phagosomal membranes. Cholesterol enrichment increased membrane condensation even further than the membrane condensation detected in control phagosomes. Incorporation of 7-keto-cholesterol (7KC) decreased membrane order of phagosomes of small beads but not of large beads. 7KC can prevent membrane condensation due to its additional keto-group, which acts as a spacer between phospholipids. Phagocytosis of large beads but not of small beads was affected by 7KC incorporation. This suggests that 7KC only moderately reduces membrane order, which diminishes but not completely abolishes phagocytosis. This might be explained by the fact that 7KC enrichment and mCD treatment diminished actin remodelling and reduced the complexity of the F-actin network. Mass spectrometry was employed to quantify the lipidome of phagosomal membranes. This is the first study that directly demonstrates that phagosomes exhibit a distinct lipid composition and were enriched in sphingomyelin (SM) but depleted of cholesterol. Furthermore, the effects of sterol modulation on lipid species abundance were investigated. Cholesterol and 7KC enrichment resulted in lower levels of PC, but higher levels of charged lipids. In addition, 7KC treatment increased SM levels. In conclusion, cross-linking of Fc receptors triggers the formation of ordered membrane domains that do not have the classical raft composition. They are cholesterol depleted but rich in sphingomyelin. The formation of these ??rafts?? occurs upstream of actin remodelling and is necessary for actin remodelling during phagocytosis.
4

Effect of implant surface roughness on the NFkB signalling pathway in macrophages

Ali, Tarek Adel 05 1900 (has links)
Physical stress such as the surface roughness of the implants may activate the NFkB signalling pathway in macrophages. This activation is intimately related to the mechanism(s) by which the macrophage interacts with the surface through serum proteins and/or the formation of membrane rafts. This thesis examines the role of surface topography on activation of the NFkB signalling pathway in macrophages. We examined the effect of implant surface topography on activating the NFkB signalling pathway in the RAW 264.7 macrophage cell line. We also examined the effect surface roughness had on the adhesion of the macrophages using the different media. To finish, we observed the effect the different media and the surface roughness had on the morphology of the macrophages by Scanning Electron Microscopy. Activation of the NFkB pathway was surface topography dependent. The Smooth surface showed the highest level of activation followed by the Etched then the SLA. Addition of suboptimal concentrations of LPS mildly enhanced the response by signalling through the Toll receptor. Activation of NFKB occurred in the absence of fetal calf sera, although to a lesser extent. All three surfaces had very few cells with nuclear translocation at the 5 minutes time point with no significant statistical differences between the surfaces. After 30 minutes, translocation reached comparable levels to those surfaces tested with complete medium. Disruption of the lipid rafts affected the triggering and signalling of the NFkB pathway. This inhibitory effect was concentration and time dependent. Smooth surfaces bound more macrophages in the 30 minutes assay. Fetal calf serum appeared to be very critical for adhesion and spreading of the macrophages on the various surfaces examined. Removal of cholesterol did not affect adhesion or spreading on their respective surfaces. We have clearly demonstrated that the lipid rafts along with surface topography play a role in the activation on NFKB. This in-vitro study has demonstrated that surface topography modulated activation of the NFKB signalling pathway in a time-dependent manner. However, at present, it is unclear through which receptor(s) / surface structure the signal pathway is initiated.
5

Effect of implant surface roughness on the NFkB signalling pathway in macrophages

Ali, Tarek Adel 05 1900 (has links)
Physical stress such as the surface roughness of the implants may activate the NFkB signalling pathway in macrophages. This activation is intimately related to the mechanism(s) by which the macrophage interacts with the surface through serum proteins and/or the formation of membrane rafts. This thesis examines the role of surface topography on activation of the NFkB signalling pathway in macrophages. We examined the effect of implant surface topography on activating the NFkB signalling pathway in the RAW 264.7 macrophage cell line. We also examined the effect surface roughness had on the adhesion of the macrophages using the different media. To finish, we observed the effect the different media and the surface roughness had on the morphology of the macrophages by Scanning Electron Microscopy. Activation of the NFkB pathway was surface topography dependent. The Smooth surface showed the highest level of activation followed by the Etched then the SLA. Addition of suboptimal concentrations of LPS mildly enhanced the response by signalling through the Toll receptor. Activation of NFKB occurred in the absence of fetal calf sera, although to a lesser extent. All three surfaces had very few cells with nuclear translocation at the 5 minutes time point with no significant statistical differences between the surfaces. After 30 minutes, translocation reached comparable levels to those surfaces tested with complete medium. Disruption of the lipid rafts affected the triggering and signalling of the NFkB pathway. This inhibitory effect was concentration and time dependent. Smooth surfaces bound more macrophages in the 30 minutes assay. Fetal calf serum appeared to be very critical for adhesion and spreading of the macrophages on the various surfaces examined. Removal of cholesterol did not affect adhesion or spreading on their respective surfaces. We have clearly demonstrated that the lipid rafts along with surface topography play a role in the activation on NFKB. This in-vitro study has demonstrated that surface topography modulated activation of the NFKB signalling pathway in a time-dependent manner. However, at present, it is unclear through which receptor(s) / surface structure the signal pathway is initiated.
6

Effect of implant surface roughness on the NFkB signalling pathway in macrophages

Ali, Tarek Adel 05 1900 (has links)
Physical stress such as the surface roughness of the implants may activate the NFkB signalling pathway in macrophages. This activation is intimately related to the mechanism(s) by which the macrophage interacts with the surface through serum proteins and/or the formation of membrane rafts. This thesis examines the role of surface topography on activation of the NFkB signalling pathway in macrophages. We examined the effect of implant surface topography on activating the NFkB signalling pathway in the RAW 264.7 macrophage cell line. We also examined the effect surface roughness had on the adhesion of the macrophages using the different media. To finish, we observed the effect the different media and the surface roughness had on the morphology of the macrophages by Scanning Electron Microscopy. Activation of the NFkB pathway was surface topography dependent. The Smooth surface showed the highest level of activation followed by the Etched then the SLA. Addition of suboptimal concentrations of LPS mildly enhanced the response by signalling through the Toll receptor. Activation of NFKB occurred in the absence of fetal calf sera, although to a lesser extent. All three surfaces had very few cells with nuclear translocation at the 5 minutes time point with no significant statistical differences between the surfaces. After 30 minutes, translocation reached comparable levels to those surfaces tested with complete medium. Disruption of the lipid rafts affected the triggering and signalling of the NFkB pathway. This inhibitory effect was concentration and time dependent. Smooth surfaces bound more macrophages in the 30 minutes assay. Fetal calf serum appeared to be very critical for adhesion and spreading of the macrophages on the various surfaces examined. Removal of cholesterol did not affect adhesion or spreading on their respective surfaces. We have clearly demonstrated that the lipid rafts along with surface topography play a role in the activation on NFKB. This in-vitro study has demonstrated that surface topography modulated activation of the NFKB signalling pathway in a time-dependent manner. However, at present, it is unclear through which receptor(s) / surface structure the signal pathway is initiated. / Dentistry, Faculty of / Graduate
7

Targeting of voltage-gated calcium channels to lipid rafts : the role of auxiliary alpha2/delta-1 subunits

Robinson, Philip January 2011 (has links)
Ca2+ entry through voltage-gated calcium channels (CaVs) triggers a range of physiological events, including synaptic neurotransmission and muscular excito-contraction coupling. CaVs are often localised to discrete membrane microdomains and are required to be targeted to such fine structures in order to perform their cellular functions. CaVs are multi-subunit protein complexes that consist of a core, pore-forming α1 subunit and auxiliary β and α2/δ subunits. The α2/δ subunit is required for the optimal cell surface expression and function of CaVs and is itself localised to cholesterol-rich membrane microdomains called lipid rafts. What is unclear is whether the α2/δ subunit is required for whole CaV complexes to be localised to lipid rafts and what effects lipid raft association has on the cell surface distribution and function of CaVs. By a combination of cellular imaging, biochemistry and electrophysiology, this project shows that the auxiliary α2/δ-1 subunit is both necessary and sufficient to target CaV2.2 to lipid rafts in the COS-7 cell heterologous expression system (Robinson et al, 2010). In addition, α2/δ is localised at the cell surface in discrete puncta and co-localises with two endogenous lipid raft resident proteins, caveolin and flotillin-1. While the punctate cell surface distribution of α2/δ is co-incident with that of caveolin and flotillin-1, its distribution is not dependent on cellular cholesterol, but rather the integrity of the actin cytoskeleton. Additional structure-function analysis by employment of the pIN-α2/δ series of deletion and substitution mutants has shown that the association of α2/δ with lipid rafts is bestowed by an extracellular region of the delta peptide, contrary to other evidence supporting the notion that α2/δ may be a GPI-anchored protein. The exact physiological and functional significance of α2/δ and CaV association with lipid rafts remains poorly understood, but the fact that CaVs are enriched within these fine structures provides a potential mechanism for targeting and access to lipid raft associated signalling pathways.
8

The influence of lipid rafts on aging and immunology

Feng, Haoqi 2009 August 1900 (has links)
Lipid rafts are operationally defined as cholesterol-rich membrane microdomains resistant to solubilization in nonionic detergents at low temperatures. Lipid rafts, which are quite different in lipid composition from the surrounding membranes, are of great importance to signal transduction, protein sorting and membrane transport. They have been implicated in a range of biosynthetic and endocytic processes and systems-signaling, molecular trafficking, diseases as well as being involved in the immune, vascular, digestive and reproductive systems. Dietary nutrients like fatty acids and vitamins of different types also play a critical and decisive role in the regulation of lipid rafts. / text
9

Interrogation of EpoR Fidelity in Myelodysplastic Syndrome Hematopoiesis and Stabilization by the Immunomodulatory Agent, Lenalidomide

Mcgraw, Kathy Lynn 01 January 2013 (has links)
Myelodysplastic syndromes (MDS) include a spectrum of stem cell malignancies characterized by ineffective hematopoiesis and predisposition to acute myeloid leukemia (AML) transformation. Patients are predominantly older (greater than 60 years old), with progressive cytopenias resulting from ineffective and cytologically dysplastic hematopoiesis. MDS subtypes are classified by morphologic features and bone marrow blast percentage, as well as cytogenetic pattern, as is the case for deletion 5q MDS. Interstitial deletion of the long arm of chromosome 5, del(5q), is the most common chromosomal abnormality in patients with MDS, and the 5q- syndrome, represents a distinct subset of del(5q) MDS characterized by an isolated deletion, megakaryocyte dysplasia, hypoplastic anemia, and an indolent natural history. MDS risk stratification is most commonly based on the International Prognostic Scoring System (IPSS) with survival outcomes ranging from a few months to many years based on risk factors. There are several therapeutic options for MDS including hematopoietic growth factors, immunosuppressive therapy, azanucleosides, and allogeneic stem cell transplant, however, there is still a need for more effective treatment options, particularly targeted therapeutics. One of the most effective treatments for MDS is selective for del(5q) MDS, and is the second generation immunomodulatory agent, lenalidomide (LEN). LEN is an analog of the known teratogen, thalidomide, and has broad biological effects including selective cytotoxicity to del(5q) clones, activation of T-cells, and expansion of erythroid precursors. In patients with del(5q) MDS, LEN is effective in up to 75% of patients, however, 50% of patients will become resistant within 2-3 years of treatment response. Studies in normal hematopoietic progenitors have shown that LEN induces expansion of the primitive erythroid precursors, which our laboratory has shown is accompanied by sensitization of progenitors to ligand induced erythropoietin receptor (EpoR) signaling. This sensitization is evidenced by increased and prolonged activation of the Signal Transducer and Activator of Transcription 5 (STAT5), compared to Epo stimulation alone. Although EpoR signaling is augmented by LEN, the exact mechanisms by which this is mediated to result in erythroid expansion are not fully characterized. In del(5q) MDS, we have shown that LEN selectively suppresses del(5q) clones via inhibition of the haploinsufficient phosphatases Cdc25c and PP2a, as well as stabilizing the human homolog of the murine double minute-2 protein (MDM2) to decrease expression of the tumor suppressor, p53, however, the mechanisms of action of LEN in non-del(5q) MDS remains elusive. Although most anemic MDS patients have normal or elevated endogenous levels of Epo, as well as comparable levels of progenitor EpoR density relative to healthy individuals, the biologic pathology underlying the impaired EpoR signaling in MDS is poorly defined. Recent reports have shown that membrane microdomains are important for T-cell, c-kit, and integrin signaling, however, there have been no reports on EpoR membrane localization. Lipid rafts are discrete membrane entities that provide platforms by which receptors aggregate and initiate downstream signaling. Furthermore, reports have indicated that there is a decrease in lipid raft density in GM-CSF primed MDS neutrophils, that consequently impaired production of reactive oxygen species (ROS) after fMLP stimulation, suggesting a role of rafts in MDS disease biology. Based on the role of rafts in signaling, and potential role in MDS pathogenesis, we sought to determine whether there was specific membrane localization of EpoR to the raft fractions, and whether disruption of rafts in MDS erythroids could impair EpoR signaling. To address this, we first examined the membrane localization of EpoR on the cell surface. We show here that EpoR translocates to lipid rafts in both erythroid progenitor cell lines as well as primary progenitor cells after stimulation by Epo. Furthermore, we found that Epo stimulation increases the assembly of lipid rafts, as well as the aggregation of rafts on the cell surface. Epo stimulation not only promoted the recruitment of EpoR into the raft fractions, but also downstream signaling intermediates such as Janus kinase 2 (Jak2), STAT5, and Lyn kinase. Moreover, a negative regulator of EpoR signaling, the CD45 tyrosine phosphatase, was redistributed outside of raft fractions after Epo stimulation, potentially enhancing receptor signal competence. Furthermore, disruption of lipid rafts by depletion of membrane cholesterol with MâCD (methyl-β-cyclodextrin) inhibited EpoR signaling in both cell lines and primary bone marrow progenitor cells. Additionally, we found that inhibition of Rho-associated, coiled-coil containing protein kinase (ROCK) and/or Ras-related C3 botulinium toxin substrate 1 (Rac1), blocked the recruitment of the receptor into the raft fractions indicating a critical role of these GTPases, and associated proteins, in the transport and localization of EpoR into raft microdomains. We next asked whether LEN could alter lipid raft assembly in erythroid precursors in the absence of Epo. LEN not only induced raft formation and aggregation but also increased F-actin polymerization. Similar to Epo stimulation, LEN alone was able to induce the recruitment of EpoR, Jak2, and STAT5 into raft fractions. Additionally, CD45 was redistributed outside of raft fractions after LEN treatment. Similarly, inhibition of ROCK blocked LEN induced raft formation and F-actin polymerization, indicating that LEN utilized effectors shared by Epo. Furthermore, LEN was able to increase raft density in raft deficient primary MDS erythroid progenitors. These data demonstrate that LEN may enhance erythroid expansion via induction of EpoR signaling competent raft platforms, to enhance survival and differentiation transcriptional response. Recently, ribosomal protein (RP), S-14, gene (RPS14) haplodeficiency was found to be a key determinant of the hypoplastic anemia in del(5q) MDS. Allelic loss of RPS14 compromises ribosome assembly, thereby causing nucleolar stress and release of free RPs that bind to and promote the degradation of MDM2, the principal negative regulator of p53. As a result, the accumulation of RPs causes lineage restricted stabilization of p53 in erythroid precursors. Our laboratory and colleagues confirmed that cellular p53 expression levels were elevated in del(5q) erythroid precursors, and that LEN decreased expression in responding patients. However, at the time of LEN treatment failure, p53 expression was again elevated at levels exceeding those at baseline. These results suggest that LEN is initially able to reverse p53 accumulation levels and that this action may be a mechanism by which LEN is selectively cytotoxic to del(5q) clones. Subsequent studies showed that LEN inhibits the cereblon E3 ubiquitin ligase complex, the newly discovered target of LEN. Cereblon has been reported to be the principal protein involved in thalidomide induced teratogenicity. Furthermore, the cytotoxic activity of LEN in multiple myeloma is dependent on cereblon. Our laboratory found that LEN inhibits the auto-ubiquitination of MDM2, thereby stabilizing the protein, and promoting ubiquitination of and ultimately the degradation of p53. Additionally, we found that LEN blocked the binding of free ribosomal proteins to MDM2, which are liberated from the nucleosome by ribosomal stress from RPS14 haploinsufficiency, consequently stabilizing the E3-ubiquitin ligase and fostering p53 degradation. In non-del(5q) MDS there is no cytotoxicity of MDS clones by LEN, suggesting an alternative method of erythropoiesis rescue. Although we know that LEN promotes the formation of signaling platforms, and recruitment of EpoR, we wished to determine whether there was an effect of LEN on EpoR expression, as EpoR expression is controlled through ubiquitination and proteasomal degradation. Treatment of erythroid progenitor cell lines and primary erythroid precursors with LEN increased cellular expression of Jak2-associated EpoR in a concentration dependent manner. There was no change in mRNA expression, supporting a post transcriptional mechanism. We then investigated whether receptor up-regulation was limited to EpoR, or included other cytokine receptors. We found that LEN induced expression of another Jak2 associated Type I receptor, IL3-R, but did not alter cellular expression of c-kit, a Type II cytokine receptor. Because Type I cytokine receptor turnover is regulated by a shared E3-ubiquitin ligase, and LEN inhibited both MDM2 and cereblon, we evaluated the effects of LEN on the E3-ubiquitin ligase, Ring Finger Protein-41 (RNF41), which regulates steady state or ligand independent, Jak2 associated Type I receptor internalization. We found that LEN inhibited the ubiquitination activity of RNF41, ultimately stabilizing EpoR membrane residence and increasing expression. In summary, MDS patients display ineffective hematopoiesis likely in part to decreased lipid raft assembly. Stimulation by Epo, or treatment by LEN, not only induced raft formation, but also induced the recruitment of both growth factor receptor, and downstream signaling intermediates into raft fractions to enhance EpoR signal fidelity. We have shown here two methods by which LEN may augment EpoR signaling. First, LEN increases lipid rafts and promotes recruitment of signaling effectors. Second, LEN increases and stabilizes the expression of EpoR through inhibition of the E3 ubiquitin ligase, RNF41. Therefore, we suggest here that LEN may have broad E3 ubiquitin ligase inhibitory effects. These data also indicate that lipid raft upregulation by LEN is mediated through GTPases, suggesting that GTPase activation may also occur via inhibition of specific E3 ubiquitin ligases, a question to be addressed in future studies.
10

Aglycone Modulation of HIV Gp120 Binding to Glycosphingolipid (GSL) Detergent-resistant Membrane (DRM) Constructs

Manis, Adam 24 February 2009 (has links)
HIV gp120 binds CD4+ cells within plasma membrane lipid rafts inducing a conformational change in gp120 that exposes its V3 loop that binds to a chemokine co-receptor, also within lipid rafts, and initiates fusion. Glycosphingolipids (GSLs) may also be bound by gp120. Lipid rafts, enriched with GSLs and cholesterol, are required for HIV entry and therefore the binding of gp120 to GSL-containing vesicles has been studied. Most of the GSL-structures were within the theoretical raft fraction on a discontinuous sucrose gradient while gp120 binding occurred outside of this fraction where a minority of structures migrated. Gb3 fatty acid content modulated binding. Gp120 bound preferentially to structures depleted of cholesterol and binding was enhanced by treating gp120 with CD4. Two water-soluble mimics of Gb3 inhibited gp120 binding to the different structures. The results demonstrate that the aglycone modulation of GSLs alters their receptor function and that the soluble mimics inhibit binding.

Page generated in 0.0454 seconds