• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of Baluns and Low Noise Amplifiers in Integrated Mixed-Signal Organic Substrates

Govind, Vinu 19 July 2005 (has links)
The integration of mixed-signal systems has long been a problem in the semiconductor industry. CMOS System-on-Chip (SOC), the traditional means for integration, fails mixed-signal systems on two fronts; the lack of on-chip passives with high quality (Q) factors inhibits the design of completely integrated wireless circuits, and the noise coupling from digital to analog circuitry through the conductive silicon substrate degrades the performance of the analog circuits. Advancements in semiconductor packaging have resulted in a second option for integration, the System-On-Package (SOP) approach. Unlike SOC where the package exists just for the thermal and mechanical protection of the ICs, SOP provides for an increase in the functionality of the IC package by supporting multiple chips and embedded passives. However, integration at the package level also comes with its set of hurdles, with significant research required in areas like design of circuits using embedded passives and isolation of noise between analog and digital sub-systems. A novel multiband balun topology has been developed, providing concurrent operation at multiple frequency bands. The design of compact wideband baluns has been proposed as an extension of this theory. As proof-of-concept devices, both singleband and wideband baluns have been fabricated on Liquid Crystalline Polymer (LCP) based organic substrates. A novel passive-Q based optimization methodology has been developed for chip-package co-design of CMOS Low Noise Amplifiers (LNA). To implement these LNAs in a mixed-signal environment, a novel Electromagnetic Band Gap (EBG) based isolation scheme has also been employed. The key contributions of this work are thus the development of novel RF circuit topologies utilizing embedded passives, and an advancement in the understanding and suppression of signal coupling mechanisms in mixed-signal SOP-based systems. The former will result in compact and highly integrated solutions for RF front-ends, while the latter is expected to have a significant impact in the integration of these communication devices with high performance computing.
2

Design, Modeling, and Characterization of Embedded Passives and Interconnects in Inhomogeneous Liquid Crystalline Polymer (LCP) Substrates

Yun, Wansuk 13 November 2007 (has links)
The goal of the research in this dissertation is to design and characterize embedded passive components, interconnects, and circuits in inhomogeneous, multi-layer liquid crystalline polymer (LCP) substrates. The attenuation properties of inhomogeneous multi-layer LCP substrates were extracted up to 40 GHz. This is the first result for an inhomogeneous LCP stack-up that has been reported. The characterization results show excellent loss characteristics, much better than FR-4-based technology, and they are similar to LTCC and homogeneous LCP-based technology. A two-port characterization method based on measurements of multiple arrays of vias is proposed. The method overcomes the drawbacks of the one-port and other two-port characterizations. Model-to-hardware correlation was verified using multi-layer model in Agilent ADS and measurement-based via model using arrays of the vias. The resulting correlations show that this method can be readily applied to other vertical interconnect structures besides via structures. Comprehensive characterizations have been conducted for the efficient 3D integration of high-Q passives using a balanced LCP substrate. At two different locations from three different large M-LCP panels, 76 inductors and 16 3D capacitors were designed and measured. The parameters for the measurement-based inductor model were extracted from the measured results. The results validate the large panel process of the M-LCP substrate. To reduce the lateral size, multi-layer 3D capacitors were designed. The designed 3D capacitors with inductors can provide optimized solutions for more efficient RF front-end module integration. In addition, the parameters for the measurement-based capacitor model were extracted. Various RF front-end modules have been designed and implemented using high-Q embedded passive components in inhomogeneous multi-layer LCP substrates. A C-band filter using lumped elements has been designed and measured. The lumped baluns were used to design a double balnced-mixer for 5 GHz WLAN application and a doubly double-balanced mixer for 1.78 GHz CDMA receiver miniaturization. Finally, to overcome the limitations of the lumped component circuits, a 30 GHz gap-coupled band-pass filter in inhomogeneous multi-layer LCP substrates, and the measured results using SOLT and TRL calibrations have been compared to the simulation results.
3

Transport Properties and Durability of LCP and FRP materials for process equipment

Römhild, Stefanie January 2010 (has links)
This thesis focuses on transport properties and durability of liquid crystalline polymers (LCP)and fibre reinforced plastics (FRP) with regard to application in industrial process equipment.In the first part of the study the possibility of using a thermotropic LCP of type Vectra A950as lining material for FRP process equipment was investigated. Its performance wascompared to that of a fluorinated ethylene propylene copolymer (FEP) with respect tochemical and permeation resistance. Transport property and chemical resistance data wereestablished for different types of LCP film (compression molded, uniaxially and biaxiallyoriented film) exposed to selected chemicals chosen to represent typical industrial processenvironments. Annealing of the LCP, which may reduce the disclination density and henceimprove the barrier properties, induced a crystallinity increase, but did not significantlyimprove the barrier and chemical resistance properties. Different surface treatments toincrease the bonding between the LCP and FRP were explored. The conclusion was that LCPhas potential to serve as lining material for FRP in contact with water, organic solvents andnon-oxidizing acid environments, although certain issues, such as jointing techniques, stillhave to be evaluated. The second part of the study focused on transport and long-termproperties of commercial thermoset and FRP materials for industrial process equipment inaqueous environments (50 – 95 °C, water activity 0.78 – 1, exposure time ≤ 1000 days). Thewater transport properties in different thermosets were related to their chemical structureusing the solubility parameter concept. The transport of water in the thermosets with differentchemical structures could be predicted from the water activity, regardless of the actual type ofionic or non-ionic solute in the solution. An empirical relationship, independent of boththermoset chemistry and temperature, was established to describe the water concentration inthe thermoset as a function of water activity and the water concentration in pure water. Inlong-term, the water concentration in the thermosets increased with exposure time. Thisseemed to be primarily related to stress relaxation processes induced by water absorption andcertain leaching effects. The effects of hydrolysis seemed to be small. The glass fibrereinforcement may to various extents affect the water transport properties by capillarydiffusion and additional absorption around fibre bundles. The extent of such processesseemed to depend on temperature, water activity and the type of thermoset and reinforcement.The present work may be a useful contribution to an increased understanding of water effectsand durability of FRP process equipment. However, open questions still remain for a morecomprehensive durability analysis. / QC20100629

Page generated in 0.0813 seconds