Spelling suggestions: "subject:"iiquid customization"" "subject:"1iquid customization""
1 |
Zkoušky rozprašovacích hlav kapalných paliv / Testing of liquid fuels atomizersSuchánek, Petr January 2010 (has links)
This thesis is dealing with testing of two atomizers in combustion of liquid fuels and natural gas. There is a simple analysis of problems, principles and methods of atomizing liquids executed. Problem of pneumatic atomizing liquids is also described in detail. In the next chapters there is a plan and running of testing processed. Overall behavior of the atomizers and flame is evaluated from the outcome measurement and the power characteristics of atomizers and influence of GLR on the quality of combustion are determined. Overall rating of the testing is presented in conclusion this thesis.
|
2 |
Contribution à la compréhension et à la maîtrise du procédé de projection plasma de suspensions céramiques / Contribution to the understanding and control of the Suspension Plasma Spray process of ceramicsAubignat, Emilie 24 October 2014 (has links)
La projection plasma de suspensions (SPS) est un procédé de revêtement de surface qui consiste à injecter une suspension (particules solides d’environ 1 μm ou moins, dispersées dans une phase liquide) dans un jet de plasma énergétique. Les particules sont chauffées, accélérées en direction d’un substrat, écrasées et soumises à une solidification très rapide (de l’ordre de 106 K.s-1). Couche après couche, un dépôt se forme en surface du substrat et lui apporte de nouvelles propriétés fonctionnelles. Cette variante de la projection plasma conventionnelle permet la fabrication de revêtements avec des épaisseurs plus fines de quelques dizaines de μm et une échelle microstructurale réduite, pouvant conduire à améliorer, par exemple, les performances de dureté ou de conductivité thermique des dépôts. Bien que ce procédé soit étudié depuis le milieu des années 1990 et connaisse un intérêt grandissant, les applications industrielles ne sont pas finalisées et leur développement nécessite d’être poursuivi. En effet, l’injection d’une suspension dans un jet thermique conduit à des phénomènes complexes tels que la fragmentation des gouttes de suspension ou encore l’évaporation de la phase liquide. A ce jour, ces mécanismes ne sont pas parfaitement compris et maîtrisés et méritent d’être étudiés pour comprendre les interactions de ces fines particules avec le plasma. Les travaux décrits dans ce mémoire s’intéressent au cas de la projection SPS de céramiques avec un atomiseur bi-fluide comme système d’injection. Deux matériaux ont été choisis : l’alumine, connue pour sa difficulté à être projetée conventionnellement et dont la formation de phases cristallines particulières constitue une source d’informations sur l’histoire thermique des particules, ainsi que l’yttrine, qui permet de confirmer les tendances observées pour l’alumine. Dans un premier temps, l’optimisation de l’injection de la suspension a été effectuée en travaillant sur deux axes. Le premier axe concerne la formulation des suspensions, qui a conduit à l’obtention, avec différentes phases liquides, de suspensions stables et dispersées, de propriétés parfaitement connues. De telles suspensions assurent une reproductibilité du procédé à ce niveau et limitent le bouchage du système d’injection. Le deuxième axe porte sur la conception mécanique en trois étapes d’un atomiseur pneumatique approprié au procédé SPS. Cette étude a commencé par la caractérisation d’une buse commerciale notamment par des tests d’injection de suspension dans le plasma. Les tests étant peu concluants, l’étude s’est poursuivie par la mise au point d’une nouvelle géométrie d’atomiseur inspirée du modèle commercial. Les essais ont conduit à la réalisation de cordons et de dépôts satisfaisants. Cette étude s’est terminée enfin par l’optimisation de sa géométrie grâce à la mise en évidence de l’influence de plusieurs paramètres-clé sur les caractéristiques du jet atomisé. Dans un second temps, des outils de diagnostic ont été mis en oeuvre pour mesurer la qualité de l’injection. Le jet de suspension a été caractérisé en termes de géométrie et de tailles de gouttes, respectivement par ombroscopie et diffraction laser. L’ombroscopie a été réutilisée pour l’optimisation de l’injection de la suspension dans le plasma en permettant le réglage en temps réel des pressions d’entrée de l’atomiseur. Les propriétés des particules en vol ont ensuite été étudiées grâce à des collectes de particules sur substrat et à la vélocimétrie par images de particules (PIV). Cet outil a apporté des informations complémentaires sur l’injection de la suspension. Enfin, les revêtements obtenus ont été caractérisés en termes de morphologie (MEB), taux de porosité (analyse d’images MEB et USAXS) et de phases cristallines (DRX et EBSD). Le couplage des informations obtenues entre ces différentes techniques a permis de faire ressortir le rôle de la phase liquide et de la charge massique sur la microstructure... / Suspension plasma spray (SPS) is a surface coating process that consists in injecting a suspension (solid particles of about 1 μm or less, dispersed in a liquid phase) in a high-energy plasma flow. Particles are heated, accelerated towards a substrate, flattened and submitted to a rapid solidification (order of 106 K.s-1). Layer after layer, a coating is formed on the substrate surface and brings new functional properties. This variation of the conventional plasma spray process allows the manufacturing of coatings with finer thickness of few tens of μm and a reduced structural scale that can lead to improved coating properties, like hardness or thermal conductivity. Even though this process has been studied since the middle of the 1990’S and known a fast-growing interest, industrial applications are not finalized and their development needs to be pursued. Indeed, the suspension injection in a thermal jet leads to complex phenomena such as suspension droplet fragmentation or liquid phase evaporation. Up to now, these mechanisms are not perfectly understood and controlled and deserve to be further studied to understand interactions between these fine particles and the plasma. This thesis focuses on the SPS process with ceramic suspensions and a twin-fluid nozzle as injection system. Two materials were chosen: alumina, known for its difficulty to be conventionally sprayed and whose crystalline phase formation represents a source of information about particle thermal history, and also yttria, in order to confirm the tendencies observed for alumina. Firstly, the suspension injection was optimized by working on two areas. The first area concerns suspension formulation. This led to obtain, with different liquid phases, stable and dispersed suspensions, whose properties are perfectly known. Such suspensions ensure reproducibility of the process at this level and limit the risk of injection system clogging. The second area is about the three-step mechanical conception of a pneumatic atomizer, adapted to the SPS process. This study began with the characterization of a commercial nozzle, in particular by testing the suspension injection into a plasma flow. Tests being little convincing, the study was carried on with the development of a new atomizer geometry, inspired from the commercial model. Trials drove to the manufacturing of satisfying spray beads and coatings. This study was finally completed with the optimization of this new geometry by highlighting the influence of several key parameters on the atomized jet features. Secondly, diagnostic tools were implemented to qualify the injection. Suspension jet was characterized in terms of geometry and droplet sizes, using respectively shadowgraphy and laser diffraction. Shadowgraphy was used again for optimizing the suspension injection into plasma by allowing the adjustment in real time of inlet atomizer pressures. In-flight particle properties were then studied thanks to particle collection onto a substrate and particle image velocimetry (PIV). This tool also provided additional information on the suspension injection. Finally, the resulting coatings were characterized in terms of morphology (SEM), porosity rate (SEM image analysis and USAXS) and crystalline phases (DRX and EBSD). The cross-checking of the information obtained with all these techniques brought out the role of the suspension liquid phase and of the mass load on the coating microstructure. These works contributed to enhance the knowledge about the SPS process and justified the use of a twin-fluid nozzle to obtain specific microstructures of coatings, whose functional characterizations have still to be done.
|
3 |
Fabrication of Controlled Release Devices Using Supercritical Antisolvent MethodLee, Lai Yeng, Smith, Kenneth A., Wang, Chi-Hwa 01 1900 (has links)
In this study, the supercritical antisolvent with enhanced mass transfer method (SASEM) is used to fabricate micro and nanoparticles of biocompatible and biodegradable polymer PLGA (poly DL lactide co glycolic acid). This process may be extended to the encapsulation of drugs in these micro and nanoparticles for controlled release purposes. Conventional supercritical antisolvent (SAS) process involves spraying a solution (organic solvent + dissolved polymer) into supercritical fluid (CO[subscript 2]), which acts as an antisolvent. The high rate of mass transfer between organic solvent and supercritical CO[subscript 2] results in supersaturation of the polymer in the spray droplet and precipitation of the polymer as micro or nanoparticles occurs. In the SASEM method, ultrasonic vibration is used to atomize the solution entering the high pressure with supercritical CO[subscript 2]. At the same time, the ultrasonic vibration generated turbulence in the high pressure vessel, leading to better mass transfer between the organic solvent and the supercritical CO₂. In this study, two organic solvents, acetone and dichloromethane (DCM) were used in the SASEM process. Phase Doppler Particle Analyzer (PDPA) was used to study the ultrasonic atomization of liquid using the ultrasonic probe for the SASEM process. Scanning Electron Microscopy (SEM) was used to study the size and morphology of the polymer particles collected at the end of the process. / Singapore-MIT Alliance (SMA)
|
4 |
Vytváření kapalinové clony pro absorpci plynných exhalací / Development of a Fluid Curtain for Gaseous Exhalations AbsorptionKrištof, Ondřej January 2020 (has links)
The dissertation thesis deals with the application of absorption methods for the separation of gaseous pollutants from polluted gaseous mixtures using a pilot plant scrubber. The efficiency of the gaseous pollutant removal was determined based on the hydrodynamic distribution of fluids inside the spray chamber. A TF-28 150 spiral nozzle, which was used to spray the absorption liquid, was experimentally characterized. Specifically, the pressure impact pattern of the liquid produced by the nozzle was investigated using intrusive methods and the effective spray angles, the modes of primary and secondary atomization, the droplet size and liquid velocity distributions were determined using non-intrusive optical methods. Numerical simulations of flow of model gas phase inside the sprinkler head and spraying of the liquid through the spiral nozzle were also carried out. The obtained data can be applied to estimate the interface area and together with the determination of the coefficient of total mass transfer thus define the kinetics of chemisorption for a given absorbent/absorbate combination.
|
5 |
Spalování kapalných paliv z obnovitelných zdrojů / Combustion of renewable liquid fuelsNejezchleb, Radek January 2011 (has links)
This thesis is concerned with combustion of liquid biofuels, and possibility of using liquid biofuels for lower heat output power units. Overview of basic usable liquid biofuels in Czech Republic is executed in the beginning of the thesis. This part is focused especially on production method and energy effectivity of rape-oil methyl ester (RME) and bioethanol production. Overview of basic atomization method of liquid fuels is executed in next chapters. The focus is stressed on pneumatic atomization, especially effervescent atomization method, which was used in practical experiment. Practical part contains fossil fuel and selected biofuel (RME) combustion test executed on burner testing device. Basic combustion properties was found and test plan was made before executing the test. Various operating conditions are compared in terms of atomization quality, combustion quality and geometrical characteristics of flame. Usability of tested liquid biofuels for lower heat output power units is evaluated in the conclusion.
|
6 |
Experimental investigation of spray characteristics of prefilming airblast atomizersRoudini, Mehrzad 11 February 2020 (has links)
Für technische Zerstäubungsprozesse wird häufig eine Flüssigkeitsmenge durch die kinetische Energie eines Hochgeschwindigkeitsgases in einem Luftstromzerstäuber in Einzeltropfen dispergiert. In einem Prefilming-Luftstromzerstäuber befindet sich die zu zerstäubende Flüssigkeit zuerst auf einer Oberfläche (Prefilming-Oberfläche) um einen dünnen Flüssigkeitsfilm zu bilden, bevor sie einem Hochgeschwindigkeitsluftstrom ausgesetzt wird. Das erste Ziel dieser Untersuchungen ist, den Zerstäubungsmechanismus der Prefilming-Zerstäuber zu verstehen und den Effekt variierender Parameter des Sprühsystems beim Zerfallsmechanismus zu ermitteln. Zerfallsregime in der Nähe des Zerstäuberauslasses wurden mittels Schattenverfahren und begleitend durch Partikelverfolgung bestimmt. Im nächsten Schritt wird die Sprühleistung des Prefilming-Luftstromzerstäubers in einer Reihe von Testbedingungen charakterisiert. Die Sprühcharakterisierung wurde mittels Phasen-Doppler-Anemometrie (PDA) durchgeführt um den Einfluss verschiedener Parameter auf die lokale Tropfengröße und Geschwindigkeit im Spray zu untersuchen. Zuletzt werden Zukunftsansätze zu Entwicklung und Design eines Prefilming-Luftstromzerstäubers aufgezeigt. Um einen einzigartigen funktionellen Zusammenhang der experimentellen Daten zu entwickeln, wurde eine Dimensionsanalyse durchgeführt. Darauffolgend zeigt der Einfluss von zwei dimensionslosen Kennzahlen unterschiedliche Sensitivitäten in Abhängigkeit vom Druckbereich und es wurde durch Anpassen der Daten eine geeigneten Korrelationsfunktion hergeteiltet. / A bulk of liquid dispersed into single droplets using the kinetic energy of a high-velocity gas in an air-blast atomizer is frequently employed in technical atomization processes.
In a prefilming air-blast atomizer, the atomizing liquid is primary situated on a surface (prefilming surface) to form a thin liquid film before exposing to a high-velocity air flow. The first purpose of this study is to understand atomization mechanisms close to prefilming atomizers and to determine the effect of spray system parameter variations on breakup mechanisms. Breakup regimes in the vicinity of the atomizer exit were determined using the shadowgraphy technique associated with particle tracking. In a next step, the spray performance of prefilming air-blast atomizers are characterized in a wide range of test conditions. For the spray characterization, a phase Doppler anemometry (PDA) was utilized to investigate the influence of variable parameters on the local droplet size and velocity in a spray.
Finally, prediction approaches are determined for the development and design of a prefilming air-blast atomizer. In order to develop a unique functional relationship from experimental data, a dimensional analysis has been performed. Subsequently, the influence of two main nondimensional numbers shows different sensitivities depending on the pressure range and was
quantified by fitting the data to appropriate correlation functions.
|
Page generated in 0.1126 seconds