• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microstructural Analysis of Linear Friction Welded Joint in Nickel-Base Inconel 738 Superalloy

Ola, Oyedele Temitope 19 January 2011 (has links)
Inconel 738 (IN 738), like other precipitation-hardened nickel-base superalloys that contain a substantial amount of Al and Ti, is very difficult to weld due to its high susceptibility to heat-affected zone (HAZ) cracking during conventional fusion welding processes. The cause of this cracking, which is usually intergranular in nature, has been attributed to the liquation of various phases in the alloy, subsequent wetting of the grain boundaries by the liquid and decohesion along one of the solid-liquid interfaces due to on-cooling tensile stresses. To address the problem of liquation cracking in weldments, recent developments in welding research have resulted in supposedly exclusive solid-state friction joining processes, such as linear friction welding (LFW), for joining crack susceptible structural alloys. The objective of this work was therefore to investigate the weldability of the difficult-to-weld IN 738 superalloy by LFW and to analyze the resulting microstructural changes in the alloy due to the welding process. LFW was performed on Linear Friction Welding Process Development System (PDS) at the Aerospace Manufacturing Technology Centre of the Institute for Aerospace Research, National Research Council (NRC) of Canada. In order to study and decouple the effect of non-equilibrium thermal cycle and imposed compressive stress during the joining, physical simulation of the LFW process was performed by using Gleeble 1500-D Thermo-Mechanical Simulation System at the University of Manitoba. Detailed microstructural study of welded and Gleeble-simulated materials was carried out. Correlation between the simulated microstructure and that of the weldments was obtained, in that, a significant grain boundary liquation was observed in both the simulated specimens and actual weldments due to non-equilibrium reaction of second phase particles, including the strengthening gamma prime phase. These results show that in contrast to the general assumption of LFW being an exclusively solid-state joining process, intergranular liquation, caused by non-equilibrium phase reaction(s), occurred during the process. However, despite a significant occurrence of liquation in the alloy, no HAZ cracking was observed. Nevertheless, the result showed that crack-free welding by linear friction welding is not due to preclusion of grain boundary liquation as has been commonly assumed and reported. Instead, resistance to cracking can be related to the counter-crack-formation effect of the imposed strain and to a concept observed and reported for the first time in this work, which is strain-induced rapid solidification. Furthermore, microstructural evolution during joining cannot be understood without considering the concept of non-equilibrium liquation reaction and strain-induced rapid solidification of the metastable liquid, which are carefully elucidated in this thesis.
2

Microstructural Analysis of Linear Friction Welded Joint in Nickel-Base Inconel 738 Superalloy

Ola, Oyedele Temitope 19 January 2011 (has links)
Inconel 738 (IN 738), like other precipitation-hardened nickel-base superalloys that contain a substantial amount of Al and Ti, is very difficult to weld due to its high susceptibility to heat-affected zone (HAZ) cracking during conventional fusion welding processes. The cause of this cracking, which is usually intergranular in nature, has been attributed to the liquation of various phases in the alloy, subsequent wetting of the grain boundaries by the liquid and decohesion along one of the solid-liquid interfaces due to on-cooling tensile stresses. To address the problem of liquation cracking in weldments, recent developments in welding research have resulted in supposedly exclusive solid-state friction joining processes, such as linear friction welding (LFW), for joining crack susceptible structural alloys. The objective of this work was therefore to investigate the weldability of the difficult-to-weld IN 738 superalloy by LFW and to analyze the resulting microstructural changes in the alloy due to the welding process. LFW was performed on Linear Friction Welding Process Development System (PDS) at the Aerospace Manufacturing Technology Centre of the Institute for Aerospace Research, National Research Council (NRC) of Canada. In order to study and decouple the effect of non-equilibrium thermal cycle and imposed compressive stress during the joining, physical simulation of the LFW process was performed by using Gleeble 1500-D Thermo-Mechanical Simulation System at the University of Manitoba. Detailed microstructural study of welded and Gleeble-simulated materials was carried out. Correlation between the simulated microstructure and that of the weldments was obtained, in that, a significant grain boundary liquation was observed in both the simulated specimens and actual weldments due to non-equilibrium reaction of second phase particles, including the strengthening gamma prime phase. These results show that in contrast to the general assumption of LFW being an exclusively solid-state joining process, intergranular liquation, caused by non-equilibrium phase reaction(s), occurred during the process. However, despite a significant occurrence of liquation in the alloy, no HAZ cracking was observed. Nevertheless, the result showed that crack-free welding by linear friction welding is not due to preclusion of grain boundary liquation as has been commonly assumed and reported. Instead, resistance to cracking can be related to the counter-crack-formation effect of the imposed strain and to a concept observed and reported for the first time in this work, which is strain-induced rapid solidification. Furthermore, microstructural evolution during joining cannot be understood without considering the concept of non-equilibrium liquation reaction and strain-induced rapid solidification of the metastable liquid, which are carefully elucidated in this thesis.
3

Heat Affected Zone Cracking of Allvac 718Plus Superalloy during High Power Beam Welding and Post-weld Heat Treatment

Idowu, Oluwaseun Ayodeji 08 April 2010 (has links)
The present dissertation reports the findings of a study of cracking behavior of a newly developed superalloy, Allvac 718Plus during high power beam welding and post-weld heat treatment. Microstructures of the base alloy, heat affected zone (HAZ) and fusion zone (FZ) of welded and post-weld heat treated (PWHT) coupons were examined by the use of standard metallographic techniques involving optical microscopy, analytical scanning electron microscopy (SEM) and analytical transmission electron microscopy. Moreover, grain boundary segregation behavior of boron atoms during pre-weld heat treatments was evaluated using secondary ion mass spectroscopic system. In the first phase of the research, 718Plus was welded using a low and high heat input CO2 laser to assess its weld cracking response. Detailed examination of the welds by analytical electron microscopic technique revealed the occurrence of cracking in the HAZ of low heat input welds, while their FZ was crack free. However, both the FZ and HAZ of high heat input welds were crack-free. Resolidified constituents were observed along the cracked grain boundaries of the lower heat input welds, which indicated that HAZ cracking in this newly developed superalloy was associated with grain boundary liquation. However, despite a more extensive liquation of grain boundaries and grain interior in the HAZ of high heat input welds, no cracking occurred. This was attributed to the combination of lower welding stresses generated during cooling, and relaxation of these stresses by thick intergranular liquid. Although HAZ cracking was prevented by welding with a high heat input laser, it resulted in a significant damage to the parent microstructure through its extensive liquation. Thus, the use of low heat input welding is desirable. However, this resulted in HAZ cracking which needs to be minimized or eliminated. Therefore, during the second phase of this research, the effects of pre-weld thermal processing on the cracking response of 718Plus were investigated. Results from the quantification of the cracking of the alloy showed that HAZ cracking may be significantly reduced or eliminated through an adequate selection of pre-weld thermal cycle. In the third stage of this research, crack-free welds of 718Plus were post-weld heat treated using standard thermal schedules. A significant solid state cracking of the alloy occurred during the PWHT. The cracking was attributed to the presence of embrittling phases on HAZ grain boundaries, coupled with aging contraction stresses that are generated by a considerable precipitation of gamma prime phase during aging.
4

Heat Affected Zone Cracking of Allvac 718Plus Superalloy during High Power Beam Welding and Post-weld Heat Treatment

Idowu, Oluwaseun Ayodeji 08 April 2010 (has links)
The present dissertation reports the findings of a study of cracking behavior of a newly developed superalloy, Allvac 718Plus during high power beam welding and post-weld heat treatment. Microstructures of the base alloy, heat affected zone (HAZ) and fusion zone (FZ) of welded and post-weld heat treated (PWHT) coupons were examined by the use of standard metallographic techniques involving optical microscopy, analytical scanning electron microscopy (SEM) and analytical transmission electron microscopy. Moreover, grain boundary segregation behavior of boron atoms during pre-weld heat treatments was evaluated using secondary ion mass spectroscopic system. In the first phase of the research, 718Plus was welded using a low and high heat input CO2 laser to assess its weld cracking response. Detailed examination of the welds by analytical electron microscopic technique revealed the occurrence of cracking in the HAZ of low heat input welds, while their FZ was crack free. However, both the FZ and HAZ of high heat input welds were crack-free. Resolidified constituents were observed along the cracked grain boundaries of the lower heat input welds, which indicated that HAZ cracking in this newly developed superalloy was associated with grain boundary liquation. However, despite a more extensive liquation of grain boundaries and grain interior in the HAZ of high heat input welds, no cracking occurred. This was attributed to the combination of lower welding stresses generated during cooling, and relaxation of these stresses by thick intergranular liquid. Although HAZ cracking was prevented by welding with a high heat input laser, it resulted in a significant damage to the parent microstructure through its extensive liquation. Thus, the use of low heat input welding is desirable. However, this resulted in HAZ cracking which needs to be minimized or eliminated. Therefore, during the second phase of this research, the effects of pre-weld thermal processing on the cracking response of 718Plus were investigated. Results from the quantification of the cracking of the alloy showed that HAZ cracking may be significantly reduced or eliminated through an adequate selection of pre-weld thermal cycle. In the third stage of this research, crack-free welds of 718Plus were post-weld heat treated using standard thermal schedules. A significant solid state cracking of the alloy occurred during the PWHT. The cracking was attributed to the presence of embrittling phases on HAZ grain boundaries, coupled with aging contraction stresses that are generated by a considerable precipitation of gamma prime phase during aging.

Page generated in 0.1277 seconds