• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of cation-dominated ionic-electronic materials and devices

Greenlee, Jordan Douglas 08 June 2015 (has links)
The memristor is a two-terminal semiconductor device that is able to mimic the conductance response of synapses and can be utilized in next-generation computing platforms that will compute similarly to the mammalian brain. The initial memristor implementation is operated by the digital formation and dissolution of a highly conductive filament. However, an analog memristor is necessary to mimic analog synapses in the mammalian brain. To understand the mechanisms of operation and impact of different device designs, analog memristors were fabricated, modeled, and characterized. To realize analog memristors, lithiated transition metal oxides were grown by molecular beam epitaxy, RF sputtering, and liquid phase electro-epitaxy. Analog memristors were modeled using a finite element model simulation and characterized with X-ray absorption spectroscopy, impedance spectroscopy, and other electrical methods. It was shown that lithium movement facilitates analog memristance and nanoscopic ionic-electronic memristors with ion-soluble electrodes can be key enabling devices for brain-inspired computing.

Page generated in 0.0731 seconds