• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermodynamique de la fusion partielle du manteau terrestre en présence de CO₂-H₂O / Thermodynamics of melting in the Earth’s mantle in presence of CO₂-H₂O

Massuyeau, Malcolm 16 December 2015 (has links)
Le lien entre les éléments volatils CO₂-H₂O et la fusion mantellique a depuis maintenant longtemps été illuminé par l’expérimentation. Une large base de données expérimentales existe et souligne l’effet primordial de ces éléments sur l’abaissement des températures de fusion de la péridotite ainsi que sur la composition des liquides magmatiques produits comme une fonction des conditions P – T – fo₂ – composition du système. Néanmoins, la diversité et la complexité de cette base de données peuvent compliquer sa compréhension globale. Dans cette étude, une analyse détaillée de la composition des liquides magmatiques riches en CO₂ et H₂O est réalisée, soulignant notamment une transition non-linéaire et plus ou moins abrupte entre des liquides carbonatitiques et des liquides silicatés. Un modèle thermodynamique est élaboré afin de calculer l’activité de SiO₂ dans les liquides magmatiques riches en CO₂-H₂O (aSiO₂(l)) et coexistant avec un assemblage péridotitique, depuis des termes carbonatitiques jusqu’à des termes basaltiques. L’application de ce modèle dans des conditions de ride océanique prédit la stabilisation des liquides carbonatitiques au démarrage de la fusion redox (liée à la transition graphite/diamant- carbonates) jusqu’à environ 100 km de profondeur, avant d’évoluer plus ou moins abruptement vers des liquides silicatés riche en CO₂. Au niveau des cratons, les kimberlites de Groupe I sont stabilisés en base de lithosphère (~250 km de profondeur), et peuvent être formés à partir d’un plume mantellique. L’épaisseur de cette lithosphère empêche la remontée du plume et la formation des OIB. Afin de décrire plus pleinement les propriétés thermodynamiques du liquide magmatique, un modèle plus complexe (système CMAS-CO₂) est en construction, dont la méthodologie est modifiée par rapport au précédent modèle calculant aSiO₂(l) ; un effort tout particulier est ici mené afin de mieux considérer les incertitudes expérimentales et thermodynamiques. / The link between volatiles (CO₂-H₂O) and mantle melting has so far been illuminated by experiments. A large experimental database exists and emphasizes the importance of volatiles on lowering solidus temperatures of peridotite and modifying the melt composition as a function of P – T – fo₂ – bulk composition. Nevertheless, the diversity and the complexity of this experimental database may complicate its global understanding. In this study, an analysis of CO₂-H₂O-rich melt composition is done, emphasizing the non-linear and more or less abrupt character of the transition between carbonate-rich melts and silicate-rich melts. A thermodynamic model is accomplished to calculate the silica activity in CO₂-H₂O-rich melts coexisting with peridotite assemblage and covering carbonatitic to basaltic terms. Along an oceanic ridge adiabat, the model predicts that carbonatitic melts can be stabilized at the onset of “redox melting” (transition between graphite/diamond-carbonates) to about 100 km depth, before abruptly evolving towards carbonated silicate melts. In cratons, Group I kimberlites are stabilized at the base of the lithosphere (about 250 km depth), and can originate from a mantle plume. The thickness of the lithosphere prevents the plume ascent and the production of OIB. In the aim of describing the melt thermodynamic properties more precisely, a more complex model (system CMAS-CO₂) is under construction, with a modified methodology relative to the previous model of silica activity; a specific effort is here conducted in order to better consider experimental and thermodynamic uncertainties.
2

Unraveling the grain size evolution in the Earth’s upper mantle : experimental observations and theoretical modeling / Observations expérimentales et modélisation de la croissance de grains d’olivine dans le manteau supérieur

Hashim, Leïla 17 May 2016 (has links)
La taille de grains dans le manteau terrestre a des implications cruciales sur les processus à grande échelle, telles que la propagation des ondes sismiques, la perméabilité et la rhéologie des roches. Cependant, la taille de grains évolue constamment avec le temps, car la croissance de grains statique induit une augmentation de la taille moyenne tandis que la recristallisation dynamique contribue à sa décroissance. La croissance d’olivine au sein d’agrégats mantelliques dans un milieu inter-granulaire sec, en présence de liquide magmatique ou dans des conditions sursaturées en eau a été modélisée dans le cadre de cette thèse. En s’appuyant sur la théorie de croissance cristalline ainsi que sur des expériences à 1-atmosphère et hautes températures précédemment publiées, la loi de croissance d’olivine sèche a été déterminée. Le facteur limitant est, dans ce cas, la diffusion du silicium aux joints de grains à travers une épaisseur effective de 30 nm. La croissance d’agrégats en présence de liquide magmatique et fluide aqueux a été contrainte par de nouvelles expériences haute pression/haute température. Ces données indiquent que les taux de croissance sont significativement plus importants que dans des conditions sèches et sont limités par des réactions aux interfaces cristal/liquide. Nous proposons une loi de croissance générale régulée par une combinaison de joints de grains secs et mouillés, grâce aux paramètres de contiguité et de mouillabilité. Cette loi de croissance unifiée est fondamentale pour extrapoler les tailles de grains expérimentales à des échelles de temps, des profondeurs et des quantités de liquides relatives au manteau supérieur. / Grain size in the Earth’s mantle is a fundamental parameter that has crucial implications on large-scale processes, such as seismic wave propagation, the permeability and the rheology of rocks. However, grain size is constantly evolving with time, where static grain growth implies an increase of the average grain size whereas dynamic recrystallization contributes to its decrease. Static grain growth of olivine-rich mantle aggregates in an intergranular medium being dry, melt-bearing and water-oversaturated has been here modeled. By using the appropriate theoretical background, the dry olivine grain growth law has been established from previously published experimental grain growth data at 1-atmosphere and high-temperature conditions. Grain growth rates for these samples are limited by silicon diffusion at grain boundaries through an effective width of 30 nm. Grain growth for melt- and water-bearing aggregates was, however, constrained by new high-pressure and high-temperature experiments. This data indicates that grain growth rates for liquid-bearing samples are significantly faster than for dry samples and are limited by precipitation reactions at the crystal/liquid interface rather by diffusion through the liquid phase. We propose a general grain growth law, which takes into account dry grain boundaries as well as wetted grain-grain interfaces, through the contiguity and wetness parameters. This unified law is fundamental to extrapolate experimental grain sizes to time scales, depths and liquid contents that are relevant of the upper mantle.

Page generated in 0.1037 seconds