• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ličio kobaltato (III)susidarymo ypatumai / PECULIARITYS OF LITHIUM COBALT OXIDE FORMATION

Jakubianecienė, Miroslava 13 June 2005 (has links)
Lithium cobalt oxide was synthesized by solid-state reactions and SPRAY-DRY method. Its investigation of the formation were perform of lithium and cobalt acetate, lithium and cobalt citrate, LiOH and Co(NO3)2· 6H2O mixtures in high-temperatures. Their formation was analyzed and with the help of the X-ray diffraction the structure of the products of the solid-state reactions was determined. The thermal processes, that take place during the synthesis, were analyzed with the help of differential-thermal analysis.
2

The Design and Optimization of a Lithium-ion Battery Direct Recycling Process

Zheng, Panni 21 August 2019 (has links)
Nowadays, Lithium-ion batteries (LIBs) have dominated the power source market in a variety of applications. Lithium cobalt oxide (LiCoO2) is one of the most common cathode materials for LIBs in consumer electronics. The recycling of LIBs is important because cobalt is an expensive element that is dependent on foreign sources for production. Lithium-ion batteries need to be recycled and disposed properly when they reach the end of life (EOL) to avoid negative environmental impact. This project focuses on recycling cathode material (LiCoO2) by direct method. Two automation stages, tape peeling stage and unrolling stage, are designed for disassembling prismatic winding cores. Different sintering conditions (e.g., temperature, sintering atmosphere, the amount of lithium addition) are investigated to recycle EOL cathode materials. The results show that the capacity of the recycled cathode materials increases with increasing temperature. The extra Li addition leads to worse cycling performance. In addition, the sintering atmosphere has little influence on small- scale sintering. Also, most of directly recycled cathode materials have better electrochemical (EC) performance than commercial LiCoO2 (LCO) from Sigma, especially when cycling with 4.45V cutoff voltage. / Master of Science / Nowadays, Lithium-ion batteries (LIBs) have dominated the power source market in a variety of applications. A LIB contains an anode, a cathode and electrolyte. The cathode material is the most valuable component in the LIB. Lithium cobalt oxide (LiCoO2) is one of the most common cathode materials for LIBs in consumer electronics. The recycling of LIBs is important because cobalt is an expensive element that is dependent on foreign sources for production. Lithium-ion batteries need to be recycled and disposed properly when they reach end of life (EOL) to avoid negative environmental impact. The direct recycling is a cost effective and energy conservative method which can be divided into two steps: retrieving the cathode materials from EOL LIBs and regenerating the cathode materials. This project focuses on recycling LiCoO2 by direct method. Two automation modules, tape peeling stage and unrolling stage, are designed for a disassembling line which is the automation line to collect the cathodes materials. The EOL cathode materials is lithium deficient (Li1-xCoO2). To regenerate the EOL cathode materials, lithium is added into structure of cathode materials which is called the re-lithiation process. The different sintering conditions (e.g., temperature, sintering atmosphere, the amount of lithium addition) are investigated for the re-lithiation process. The results show that the capacity of the recycled cathode materials increases with increasing temperature. The extra Li addition in iv Li1-xCoO2 leads to worse cycling performance. In addition, sintering atmosphere has little influence on small- scale sintering. Most of directly recycled cathode materials have better electrochemical (EC) performance than commercial LiCoO2, especially when cycling with 4.45V cutoff voltage.
3

Thermal Cycling Of LTO||LCO Batteries Subjected to Electric Vehicle Schedule and Its Second Life Evaluation

January 2019 (has links)
abstract: Lithium titanium oxide (LTO), is a crystalline (spinel) anode material that has recently been considered as an alternative to carbon anodes in conventional lithium-ion batteries (LIB), mainly due to the inherent safety and durability of this material. In this paper commercial LTO anode 18650 cells with lithium cobalt oxide (LCO) cathodes have been cycled to simulate EV operating condition (temperature and drive profiles) in Arizona. The capacity fade of battery packs (pack #1 and pack#2), each consisting 6 such cells in parallel was studied. While capacity fades faster at the higher temperature (40°C), fading is significantly reduced at the lower temperature limit (0°C). Non-invasive techniques such as Electrochemical Impedance Spectroscopy (EIS) show a steady increase in the high-frequency resistance along with capacity fade indicating Loss of Active Material (LAM) and formation of co-intercalation products like Solid Electrolyte Interface (SEI). A two-stage capacity fade can be observed as previously reported and can be proved by differential voltage curves. The first stage is gradual and marks the slow degradation of the anode while the second stage is marked by a drastic capacity fade and can be attributed to the fading cathode. After an effective capacity fading of ~20%, the battery packs were disassembled, sorted and repackaged into smaller packs of 3 cells each for second-life testing. No major changes were seen in the crystal structure of LTO, establishing its electrochemical stability. However, the poor built of the 18650-cell appears to have resulted in failures like gradual electrolytic decomposition causing prominent swelling and failure in a few cells and LAM from the cathode along with cation dissolution. This result is important to understand how LTO batteries fail to better utilize the batteries for specific secondary-life applications. / Dissertation/Thesis / Masters Thesis Materials Science and Engineering 2019
4

Accessing Controlled Nanostructures from Lithium Cobalt Oxide

Pachuta, Kevin 26 January 2021 (has links)
No description available.
5

Materials for future power sources

Ludvigsson, Mikael January 2000 (has links)
<p>Proton exchange membrane fuel cells and lithium polymer batteries are important as future power sources in electronic devices, vehicles and stationary applications. The development of these power sources involves finding and characterising materials that are well suited r the application.</p><p>The materials investigated in this thesis are the perfluorosulphonic ionomer Nafion<sup>TM </sup>(DuPont) and metal oxides incorporated into the membrane form of this material. The ionomer is used as polymer electrolyte in proton exchange membrane fuel cells (PEMFC) and the metal oxides are used as cathode materials in lithium polymer batters (LPB).</p><p>Crystallinity in cast Nafion films can be introduced by ion beam exposure or aging. Spectroscopic investigations of the crystallinity of the ionomer indicate that the crystalline regions contain less water than amorphous regions and this could in part explain the drying out of the polymer electrolyte membrane in a PEMFC.</p><p>Spectroscopic results on the equilibrated water uptake and the state of water in thin cast ionomer films indicate that there is a full proton transfer from the sulphonic acid group in the ionomer when there is one water molecule per sulphonate group.</p><p>The LPB cathode materials, lithium manganese oxide and lithium cobalt oxide, were incorporated <i>in situ</i> in Nafion membranes. Other manganese oxides and cobalt oxides were incorporated <i>in situ</i> inside the membrane. Ion-exchange experiments from HcoO<sub>2 </sub>to LiCoO<sub>2 </sub>within the membrane were also successful.</p><p>Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction were used for the characterisation of the incorporated species and the Nafion film/membrane.</p>
6

Materials for future power sources

Ludvigsson, Mikael January 2000 (has links)
Proton exchange membrane fuel cells and lithium polymer batteries are important as future power sources in electronic devices, vehicles and stationary applications. The development of these power sources involves finding and characterising materials that are well suited r the application. The materials investigated in this thesis are the perfluorosulphonic ionomer NafionTM (DuPont) and metal oxides incorporated into the membrane form of this material. The ionomer is used as polymer electrolyte in proton exchange membrane fuel cells (PEMFC) and the metal oxides are used as cathode materials in lithium polymer batters (LPB). Crystallinity in cast Nafion films can be introduced by ion beam exposure or aging. Spectroscopic investigations of the crystallinity of the ionomer indicate that the crystalline regions contain less water than amorphous regions and this could in part explain the drying out of the polymer electrolyte membrane in a PEMFC. Spectroscopic results on the equilibrated water uptake and the state of water in thin cast ionomer films indicate that there is a full proton transfer from the sulphonic acid group in the ionomer when there is one water molecule per sulphonate group. The LPB cathode materials, lithium manganese oxide and lithium cobalt oxide, were incorporated in situ in Nafion membranes. Other manganese oxides and cobalt oxides were incorporated in situ inside the membrane. Ion-exchange experiments from HcoO2 to LiCoO2 within the membrane were also successful. Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction were used for the characterisation of the incorporated species and the Nafion film/membrane.

Page generated in 0.078 seconds