Spelling suggestions: "subject:"1ithium manganese silicate"" "subject:"alithium manganese silicate""
1 |
Graphol and vanadia-link zin doped lithium manganese silicate nanoarchitectonic platforms for supercapatteriesNdipingwi, Miranda Mengwi January 2020 (has links)
Doctor Educationis / Energy storage technologies are rapidly being developed due to the increased awareness of
global warming and growing reliance of society on renewable energy sources. Among various
electrochemical energy storage technologies, high power supercapacitors and lithium ion
batteries with excellent energy density stand out in terms of their flexibility and scalability.
However, supercapacitors are handicapped by low energy density and batteries lag behind in
power. Supercapatteries have emerged as hybrid devices which synergize the merits of
supercapacitors and batteries with the likelihood of becoming the ultimate power sources for
multi-function electronic equipment and electric/hybrid vehicles in the future. But the need for
new and advanced electrodes is key to enhancing the performance of supercapatteries. Leading
edge technologies in material design such as nanoarchitectonics become very relevant in this
regard. This work involves the preparation of vanadium pentoxide (V2O5), pristine and zinc
doped lithium manganese silicate (Li2MnSiO4) nanoarchitectures as well as their composites
with hydroxylated graphene (G-ol) and carbon nanotubes (CNT). / 2023-12-02
|
2 |
Graphol and vanadia-linkedzink-doped lithium manganese silicate nanoarchitectonic platforms for supercapatteriesNdipingwi, Miranda Mengwi January 2020 (has links)
Philosophiae Doctor - PhD / Energy storage technologies are rapidly being developed due to the increased awareness of global warming and growing reliance of society on renewable energy sources. Among various electrochemical energy storage technologies, high power supercapacitors and lithium ion batteries with excellent energy density stand out in terms of their flexibility and scalability. However, supercapacitors are handicapped by low energy density and batteries lag behind in power. Supercapatteries have emerged as hybrid devices which synergize the merits of supercapacitors and batteries with the likelihood of becoming the ultimate power sources for multi-function electronic equipment and electric/hybrid vehicles in the future. But the need for new and advanced electrodes is key to enhancing the performance of supercapatteries. Leading-edge technologies in material design such as nanoarchitectonics become very relevant in this regard. This work involves the preparation of vanadium pentoxide (V2O5), pristine and zinc doped lithium manganese silicate (Li2MnSiO4) nanoarchitectures as well as their composites with hydroxylated graphene (G-ol) and carbon nanotubes (CNT). / 2023-12-01
|
Page generated in 0.0613 seconds