Spelling suggestions: "subject:"aqueous electrolyte"" "subject:"queous electrolyte""
1 |
Surface Studies on Diamond Electrodes in Non-Aqueous ElectrolytesSchreiber, Jessica L. 17 May 2010 (has links)
No description available.
|
2 |
Fundamental and Flow Battery Studies for Non-Aqueous Redox SystemsEscalante García, Ismailia Leilani 03 June 2015 (has links)
No description available.
|
3 |
Surface Phenomena in Li-Ion BatteriesAndersson, Anna January 2001 (has links)
<p>The formation of surface films on electrodes in contact with non-aqueous electrolytes in lithium-ion batteries has a vital impact on battery performance. A basic understanding of such films is essential to the development of next-generation power sources. The surface chemistry, morphology and thermal stability of two typical anode and cathode materials, graphite and LiNi<sub>0.8</sub>Co<sub>0.2</sub>O<sub>2</sub>, have here been evaluated by X-ray photoelectron spectroscopy (XPS), X-ray diffraction, scanning electron microscopy and differential scanning calorimetry, and placed in relation to the electrochemical performance of the electrodes. </p><p>Chemical and morphological information on electrochemically formed graphite surface films has been obtained accurately by combining XPS measurements with Ar<sup>+</sup> ion etching. An improved picture of the spatial organisation, including thickness determination of the surface film and characterisation of individual component species, has been established by a novel sputtering calibration procedure. The stability of the surface films has been shown to depend strongly on temperature and choice of lithium salt. Decomposition products from elevated-temperature storage in different electrolyte systems were identified and coupled to effects such as capacity loss and increase in electrode resistance. Different decomposition mechanisms are proposed for surface films formed in electrolytes containing LiBF<sub>4</sub>, LiPF<sub>6</sub>, LiN(SO<sub>2</sub>CF<sub>3</sub>)<sub>2</sub> and LiCF<sub>3</sub>SO<sub>3</sub> salts.</p><p>Surface film formation due to electrolyte decomposition has been confirmed on LiNi<sub>0.8</sub>Co<sub>0.2</sub>O<sub>2</sub> positive electrodes. An overall surface-layer increase with temperature has been identified and provides an explanation for the impedance increase the material experiences on elevated-temperature storage. </p><p>Surface phenomena are clearly major factors to consider in selecting materials for practical Li-ion batteries.</p>
|
4 |
Surface Phenomena in Li-Ion BatteriesAndersson, Anna January 2001 (has links)
The formation of surface films on electrodes in contact with non-aqueous electrolytes in lithium-ion batteries has a vital impact on battery performance. A basic understanding of such films is essential to the development of next-generation power sources. The surface chemistry, morphology and thermal stability of two typical anode and cathode materials, graphite and LiNi0.8Co0.2O2, have here been evaluated by X-ray photoelectron spectroscopy (XPS), X-ray diffraction, scanning electron microscopy and differential scanning calorimetry, and placed in relation to the electrochemical performance of the electrodes. Chemical and morphological information on electrochemically formed graphite surface films has been obtained accurately by combining XPS measurements with Ar+ ion etching. An improved picture of the spatial organisation, including thickness determination of the surface film and characterisation of individual component species, has been established by a novel sputtering calibration procedure. The stability of the surface films has been shown to depend strongly on temperature and choice of lithium salt. Decomposition products from elevated-temperature storage in different electrolyte systems were identified and coupled to effects such as capacity loss and increase in electrode resistance. Different decomposition mechanisms are proposed for surface films formed in electrolytes containing LiBF4, LiPF6, LiN(SO2CF3)2 and LiCF3SO3 salts. Surface film formation due to electrolyte decomposition has been confirmed on LiNi0.8Co0.2O2 positive electrodes. An overall surface-layer increase with temperature has been identified and provides an explanation for the impedance increase the material experiences on elevated-temperature storage. Surface phenomena are clearly major factors to consider in selecting materials for practical Li-ion batteries.
|
5 |
Determining the voltage range of a carbon-based supercapacitorWells, Thomas January 2014 (has links)
The focus of this thesis has been to determine the usable voltage range of carbon-based supercapacitors (SC). Supercapacitors are a relatively new type of capacitors with a vast increase in capacitance compared to capacitors which utilize a dielectric as charge separator. A SC consists of two electrodes and an electrolyte separating the electrodes. The charges are stored by electrostatic forces in the interface between the electrode and the electrolyte, forming the so called electrochemical double-layer (EDL). With porous electrodes the effective surface area of the interfacial zone can be made very large, giving SCs a large storage capacity. The limiting factors of a SC is the decomposition potential of the electrolyte and the decomposition of the electrodes. For commercially manufactured SCs the electrolyte is usually an organic solvent, which has a decomposition potential of up to 2.7-2.8 V. Compared to aqueous electrolytes with a thermodynamic limit of 1.23 V. The drawback of using non-aqueous electrolytes is that they are not environmentally friendly, and they increase the production cost. It is claimed that the voltage range can be up to 1.9 V using aqueous electrolytes. Some researchers have focused on aqueous electrolytes for these reasons. In this thesis two different electrolytes were tested to determine if the voltage range could be extended. The experiments were conducted using a three electrode cell and performing cyclic voltammogram measurements (CV). The carbon electrodes were made of two different sources of grahite, battery graphite or exfoliated graphite, and nano fibrilated cellulose was added to increase the mechanical stability. The results show that the oxidation potential of the carbon electrode was the positive limit. A usable potential of about 1 V was shown. However, when cycling the electrodes to potentials below the decomposition limit, for hydrogen evolution, interesting effects were seen. A decrease in reaction kinetics, indicating a type of conditioning of the electrode was observed. An increase in charge storage capacitance was also observed when comparing the initial measurements with the final, probably corresponding to an increase in porosity. / KEPS projekt Sundsvall Mitt Universitet
|
6 |
Design, Construction, and Implementation of Ionization Method Surface Potential Instrument For Studies of Charged Surfactants and Inorganic Electrolytes At the Air/Water InterfaceAdel, Tehseen January 2017 (has links)
No description available.
|
7 |
Molecular Simulation Study of Electric Double Layer Capacitor With Aqueous ElectrolytesVerma, Kaushal January 2017 (has links) (PDF)
Electric double layer capacitors (EDLCs) are an important class of electrical energy storage devices which store energy in the form of electric double layers. The charging mechanism is highly reversible physical adsorption of ions into the porous electrodes, which empower these devices to show a remarkable power performance (15kW/kg) and greater life expectancy (> 1 million cycles). However, they store a small amount of energy (5Wh/kg) when compared with batteries. Optimization of the performance of EDLCs based on porous activated carbons is highly challenging due to complex charging process prevailing in the Nano pores of electrodes. Molecular simulations provide information at the molecular scale which in turn can be used to develop insights that can explain experimental results and design improved EDLCs.
The conventional approach to simulate EDLCs places both the electrodes and electrolyte region in a single simulation box. With present day computers, however, this one-box method limits us to system sizes of the order of nanometres whereas the size of a typical EDLC is at least of the order of micrometres. To overcome this system size limitation, a Gibbs-ensemble based Monte Carlo (MC) method was recently developed, where the electrodes are simulated in a separate simulation boxes and each box is subjected to periodic boundary conditions in all the three directions. This allows us to eliminate the electrode-electrolyte interface. The simulation of the bulk electrolyte is avoided through the use of the grand canonical ensemble. The electrode atoms in the electrode are maintained at an equal constant electric potential likewise the case in a pure conductor with the use of the constant voltage ensemble.
In this thesis, the Gibbs-ensemble based MC simulations are performed for an EDLC consisting of porous electrodes. The simulations are performed with aqueous electrolytes of type MX and DX2 (where M=Na+, K+; D=Ca+2; X=Cl , F ) for a wide variety of operating conditions. The water is modelled as a continuum background with a dielectric constant value of 30. The electrodes are silicon carbide-derived carbon, whose microstructure generated from reverse MC technique, is used in the simulations. The results from these simulations help us understand the charge storage mechanism, the effect of size and valence of ions on the performance of nonporous carbon based EDLCs when the hydration effects are indignant.
The thesis first demonstrates the presence of finite size effects in the simulations performed with the one-box method for KCl electrolyte. The capacitance (ratio of the charged stored on the positive electrode to the voltage applied) values obtained for KCl electrolyte with the one-box method are significantly higher than the corresponding values obtained from the Gibbs-ensemble method. This shows the presence of finite size effects in the one-box method simulations and justices the use of the Gibbs-ensemble based method in our simulations.
The fundamental characteristics of aqueous electrolytes in the EDLC are analyzed with the simulation results for KCl electrolyte. In agreement with experiments and modern mean held theory, the capacitance monotonically decreases with voltage (bell-shaped curve) due to overcrowding of ions near the electrode surface. The charge storage mechanism in both the electrodes is mainly a combination of countering (ions oppositely charged to that of the electrode) adsorption and ion exchange, where coins (ions identically charged to that of the electrode) are replaced with countering. However, at higher voltages, the mechanism is predominantly counter ion adsorption because of the scarcity of coins in the electrodes. The mechanism is preferentially more ion exchange for the positive electrode because of its relatively bulky countering, Cl . The shifting of mechanism towards counter ion adsorption at higher voltages and preferential ion exchange process for the positive electrode are in qualitative agreement with the recent experimental results.
The constraint of equal electric potential on all the electrode atoms of the amorphous electrode in the simulations resulted in a non-uniform average charge distribution on the electrodes. It shows that the Gibbs-ensemble simulation approach can account for the polarization effects which arises due to a complex topology of the electrodes. In agreement with earlier experiments and simulation studies, the local structure analyses of the electrodes shows that the highly conned ions store charge more efficiently. On the application of voltage difference between the electrodes, the electrolyte ions move towards higher degree of con ned regions of the electrodes indicating the charging process involves local rearrangement and rescuing of electrolyte ions.
The thesis also discusses the effect of temperature and bulk concentration on the performance of EDLCs. The Gibbs-ensemble based simulations are performed for the EDLC with varying temperature and bulk concentration for the KCl electrolyte independently. In agreement with the Guo -Chapman theory and experiments, the capacitance decreases with the temperature and increases with the bulk concentration. This is because the concentration of countering in the electrodes decreases with an increase in the temperature but increases with an increase in the bulk concentration.
Lastly, the effect of ion size and valency on the performance of EDLCs is analyzed. The capacitance monotonically decreases with voltage (bell-shaped curve) for all the electrolytes, except for NaF, where a maximum is observed at a non-zero finite voltage (camel-shaped curve). The capacitances of NaCl and NaF are greater than that for KCl and KF, respectively. This is because the smaller Na+ ions have more accessibility to narrow con ned regions, where the charge storage efficiency is high. As expected, the capacitance for CaCl2 and CaF2 are highest among their monovalent counterparts, NaCl and KCl; NaF and KF, respectively. This is attributed to the relatively smaller double layer thickness of the bivalent Ca+2 ions. Interestingly, at higher voltages, the capacitance for the bivalent electrolytes approaches the capacitance for the monovalent electrolytes because the concentration of Ca+2 ions in the negative electrode increases sluggishly with voltage due to a strong electrostatic repulsion between Ca+2 ions.
|
8 |
Electrochemical Investigations Of Sub-Micron Size And Porous Positive Electrode Materials Of Li-Ion BatteriesSinha, Nupur Nikkan 05 1900 (has links) (PDF)
A Comprehensive review of literature on electrode materials for lithium-ion batteries is provided in Chapter 1 of the thesis.
Chapter 2 deals with the studies on porous, sub-micrometer size LiNi1/3Co1/3O2 as a positive electrode material for Li-ion cells synthesized by inverse microemulsion route and polymer template route. The electromechanical characterization studies show that carbon-coated LiNi1/3Co1/3O2 samples exhibit improved rate capability and cycling performance. Furthermore, it is anticipated that porous LiNi1/3Co1/3O2 could be useful for high rates of charge-discharge cycling. Synthesis of sub-micrometer size, porous particles of LiNi1/3Co1/3O2 using a tri-block copolymer as a soft template is carried out. LiNi1/3Co1/3O2 sample prepared at 900ºC exhibits a high rate capability and stable capacity retention of cycling. The electrochemical performance of LiNi1/3Co1/3O2 prepared in the absence of the polymer template is inferior to that of the sample prepared in the presence of the polymer template.
Chapter 4 involves the synthesis of sub-micrometer size particles of LiMn2O4 in quaternary microemulsion medium. The electrochemical characterization studies provide discharge capacity values of about 100 mAh g-1 at C/5 rate and there is moderate decrease in capacity by increasing the rate of charge-discharge cycling. Studies also include charge-discharge cycling as well as ac impedance studies in temperature range from -10 to 40º C.
Chapter 5 reports the synthesis of nano-plate LiFePO4 by polyol route starting from two reactants, namely, FePO42H2O and LiOH.2H2O. The electrodes fabricated out of nano-plate of LiFePO4 exhibit a high electrochemical activity. A stable capacity of about 155 mAh g-1 is measured at 0.2 C over 50 charge-discharge cycles. Mesoporous LiFePO4/C composite with two sizes of pores is prepared for the first time via solution-based polymer template technique. The precursor of LiFePO4/C composite is heated at different temperatures in the range from 600 to 800ºC to study the effect of crystalllinity, porosity and morphology on the electrochemical performance. The compound obtained at 700ºC exhibits a high rate capability and stable capacity retention on cycling with pore size distribution around 4 and 46nm.
In Chapter 6, the electrochemical characterization of LiMn2O4 in an aqueous solution of 5 M LiNO3 is reported. A typical cell employing LiMn2O4 as the positive electrode and V2O5 as the negative electrode was assembled and the characterized by charge-discharge cycling in 5 M LiNO3 aqueous electrolyte. Furthermore, it is shown that Li+-ion in LiMn2O4 can be replaced by other divalent ions resulting in the formation of MMn2O4 (M = Ca, Mg, Ba and Sr) in aqueous M(NO3)2 electrolytes by subjecting LiMn2O4 electrodes to cyclic voltametry. Cyclic voltammetry and chronopotentiometry studies suggest that MMn2O4 can undergo reversible redox reaction by intercalation/deintercalation of M2+-ions in aqueous M(NO3)2 electrolytes.
|
9 |
Hollow MoSx nanomaterials for aqueous energy storage applicationsQuan, Ting 31 May 2021 (has links)
Die vorliegende Arbeit konzentriert sich auf die Synthese von neuartigen hohlen MoSx-Nanomaterialien mit kontrollierbarer Größe und Form durch die kolloidale Template Methode. Ihre möglichen Anwendungen in wässrigen Energiespeichersystemen, einschließlich Superkondensatoren und Li-Ionen-Batterien (LIBs), wurden untersucht.
Im ersten Teil wurde eine neue Nanostruktur aus hohlen Kohlenstoff-MoS2-Kohlenstoff-nanoplättchen erfolgreich durch eine L-Cystein unterstützte hydrothermale Methode unter Verwendung von Gibbsit als Templat und Polydopamin (PDA) als Kohlenstoffvorläufer synthetisiert. Nach dem Kalzinieren und Ätzen des Gibbsit Templates wurden gleichförmige Hohlplättchen erhalten, die aus einer sandwichartigen Anordnung von teilweise graphitischem Kohlenstoff und zweidimensional geschichteten MoS2 Flocken bestehen. Die Plättchen haben eine ausgezeichnete Dispergierbarkeit und Stabilität in Wasser sowie eine gute elektrische Leitfähigkeit aufgrund des durch die Kalzinierung von Polydopaminbeschichtungen erzeugten Kohlenstoffs gezeigt. Das Material wird dann in einem symmetrischen Superkondensator mit 1 M Li2SO4 als Elektrolyt aufgebracht, der eine spezifische Kapazität von 248 F/g (0.12 F/cm2) bei einer konstanten Stromdichte von 0.1 A/g und eine ausgezeichnete elektrochemische Stabilität über 3000 Zyklen aufweist, was darauf hindeutet, dass hohle Kohlenstoff-MoS2-Kohlenstoffnanoplättchen vielversprechende Materialien als Kandidaten für Superkondensatoren sind.
Im zweiten Teil wurde 21 molare LiTFSI, das sogenannte "Wasser-in-Salz" (WIS) Elektrolyt, in Superkondensatoren mit hohlen Kohlenstoffnanoplättchen als Elektrodenmaterial untersucht. Im Vergleich zu dem im ersten Teil verwendeten 1 molaren Li2SO4-Elektrolyten wurden bei dem vorliegenden WIS Elektrolyt signifikante Verbesserungen in einem breiteren und stabilen Potentialfenster festgestellt, das durch die geringere Leitfähigkeit mit dem Gegenstück leicht beeinflusst wird. Die elektrochemische Impedanzspektroskopie (EIS) wurde ausgiebig eingesetzt, um einen Einblick in die Reaktionsmechanismen der WIS-Superkondensatoren zu erhalten. Zusätzlich wurde auch der Einfluss der Temperatur auf die elektrochemische Leistung im Temperaturbereich zwischen 15 und 55 °C untersucht, was eine hervorragende spezifische Kapazität von 128 F/g bei dem optimierten Zustand von 55 °C ergab. Die EIS-Messungen deckten die Abnahme der angepassten Widerstände mit der Temperaturerhöhung und umgekehrt auf und beleuchteten direkt die Beziehung zwischen elektrochemischer Leistung und Arbeitstemperatur von Superkondensatoren für zuverlässige praktische Anwendungen.
Im dritten Teil wurde MoS3, ein amorphes, kettenförmig strukturiertes Übergangsmetall Trichalcogenid, als vielversprechende Anode in "Wasser-in-Salz" Li-Ionen-Batterien (WIS-LIBs) nachgewiesen. Die in diesem Teil verwendeten hohlen MoS3-Nanosphären wurden mittels einer skalierbaren Säurefällungsmethode bei Raumtemperatur synthetisiert, wobei sphärische Polyelektrolytbürsten (SPB) als Schablonen verwendet wurden. Beim Einsatz in WIS-LIBs mit LiMn2O4 als Kathodenmaterial erreicht das präparierte MoS3 eine hohe spezifische Kapazität von 127 mAh/g bei einer Stromdichte von 0.1 A/g und eine gute Stabilität über 1000 Zyklen sowohl in Knopf- als auch in Pouch-Zellen. Der Arbeitsmechanismus von MoS3 in WIS-LIBs wurde auch durch Ex-situ-Röntgenbeugungsmessungen (XRD) untersucht. Während des Betriebs wird MoS3 während der anfänglichen Li-Ionen-Aufnahme irreversibel in Li2MoO4 umgewandelt und dann allmählich in eine stabilere und reversible LixMoOy-Phase (2≤y≤4)) entlang der Zyklen umgewandelt. Amorphes Li-defizientes Lix-mMoOy/MoOz wird bei der Delithiierung gebildet.
Die Ergebnisse der vorliegenden Studie zeigen einfache Ansätze zur Synthese hohler MoSx-Nanomaterialien mit kontrollierbarer Morphologie unter Verwendung einer Template-basierten Methode, die auf die vielversprechende Leistung von MoSx für wässrige Energiespeicheranwendungen zurückzuführen sind. Die elektrochemischen Untersuchungen von hohlen MoSx-Nanomaterialien in wässrigen Elektrolyten geben Einblick in die Reaktionsmechanismen von wässrigen Energiespeichersystemen und treiben die Entwicklung von Metallsulfiden für wässrige Energiespeicheranwendungen voran. / The present thesis focuses on the synthesis of novel hollow MoSx nanomaterials with controllable size and shape through the colloidal template method. Their possible applications in aqueous energy storage systems, including supercapacitors and Li-ion batteries (LIBs), have been studied.
In the first part, hollow carbon-MoS2-carbon nanoplates have been successfully synthesized through an L-cysteine-assisted hydrothermal method by using gibbsite as the template and polydopamine (PDA) as the carbon precursor. After calcination and etching of the gibbsite template, uniform hollow platelets, which are made of a sandwich-like assembly of partial graphitic carbon and two-dimensional layered MoS2 flakes, have been obtained. The platelets have shown excellent dispersibility and stability in water, and good electrical conductivity due to carbon coating generated by the calcination of polydopamine. The material is then applied in a symmetric supercapacitor using 1 M Li2SO4 as the electrolyte, which exhibits a specific capacitance of 248 F/g (0.12 F/cm2) at a constant current density of 0.1 A/g and an excellent electrochemical stability over 3000 cycles, suggesting that hollow carbon-MoS2-carbon nanoplates are promising candidate materials for supercapacitors.
In the second part, 21 m LiTFSI, so-called “water-in-salt” (WIS) electrolyte, has been studied in supercapacitors with hollow carbon nanoplates as electrode materials. In comparison with 1 M Li2SO4 electrolyte used in the first part, significant improvements on a broader and stable potential window have been revealed in the present WISE, which is slightly influenced by the lower conductivity with the counterpart. The electrochemical impedance spectroscopy (EIS) has been extensively employed to provide an insight look on the formation of solid electrolyte interphase in the WIS-supercapacitors. Additionally, the effect of temperature on the electrochemical performance has also been investigated in the temperature range between 15 and 55 °C, yielding eminent specific capacitance of 128 F/g at the optimized condition of 55 °C. The EIS measurements disclosed the decrease of fitted resistances with the increase of temperature and vise versa, directly illuminating the relationship between electrochemical output and working temperature of supercapacitors for reliable practical applications.
In the third part, MoS3, an amorphous chain-like structured transitional metal trichalcogenide, has been demonstrated as a promising anode in the “water-in-salt” Li-ion batteries (WIS-LIBs). Hollow MoS3 nanospheres used in this part have been synthesized via a scalable room-temperature acid precipitation method using spherical polyelectrolyte brushes (SPB) as the template. When applied in WIS-LIBs with LiMn2O4 as the cathode material, the prepared MoS3 achieves a high specific capacity of 127 mAh/g at the current density of 0.1 A/g and good stability over 1000 cycles in both coin cells and pouch cells. The working mechanism of MoS3 in WIS-LIBs has also been studied by ex-situ X-ray diffraction (XRD) measurements. During operation, MoS3 undergoes irreversible conversion to Li2MoO4 during the initial Li ion uptake, and is then gradually converted to a more stable and reversible LixMoOy (2≤y≤4)) phase along cycling. Amorphous Li-deficient Lix-mMoOy/MoOz is formed upon delithiation.
The results in the present thesis demonstrate facile approaches for synthesizing hollow MoSx nanomaterials with controllable morphologies using a template-based method, which attribute to the promising performance of MoSx for aqueous energy storage applications. The electrochemical studies of hollow MoSx nanomaterials in aqueous electrolytes provide insight into the reaction mechanisms of aqueous energy storage systems and push forward the development of metal sulfides for aqueous energy storage applications.
|
10 |
Graphol and vanadia-linkedzink-doped lithium manganese silicate nanoarchitectonic platforms for supercapatteriesNdipingwi, Miranda Mengwi January 2020 (has links)
Philosophiae Doctor - PhD / Energy storage technologies are rapidly being developed due to the increased awareness of global warming and growing reliance of society on renewable energy sources. Among various electrochemical energy storage technologies, high power supercapacitors and lithium ion batteries with excellent energy density stand out in terms of their flexibility and scalability. However, supercapacitors are handicapped by low energy density and batteries lag behind in power. Supercapatteries have emerged as hybrid devices which synergize the merits of supercapacitors and batteries with the likelihood of becoming the ultimate power sources for multi-function electronic equipment and electric/hybrid vehicles in the future. But the need for new and advanced electrodes is key to enhancing the performance of supercapatteries. Leading-edge technologies in material design such as nanoarchitectonics become very relevant in this regard. This work involves the preparation of vanadium pentoxide (V2O5), pristine and zinc doped lithium manganese silicate (Li2MnSiO4) nanoarchitectures as well as their composites with hydroxylated graphene (G-ol) and carbon nanotubes (CNT). / 2023-12-01
|
Page generated in 0.0775 seconds