1 |
The conductivity of carbonate and phosphate species in aqueous solution and in some related natural watersTalbot, James David Ralph January 1990 (has links)
No description available.
|
2 |
FABRICATION OF A SURFACE ENHANCED NICKEL ULTRACAPACITOR USING A POTASSIUM HYDROXIDE ELECTROLYTEWomack, Robin 22 January 2009 (has links)
No description available.
|
3 |
Développement d'une nouvelle technologie Li-ion fonctionnant en solution aqueuse / Development of a new aqueous lithium-ion technologyMarchal, Laureline 10 November 2011 (has links)
L'utilisation d'un électrolyte aqueux pour la technologie Li-ion devrait permettre des performances en termes de puissance et de coût tout en garantissant une sécurité de fonctionnement et un impact neutre vis-à-vis de l'environnement. Cette technologie utilise des composés d'insertion du lithium fonctionnant habituellement en milieu organique dont le choix doit être adapté à un électrolyte aqueux, présentant une fenêtre de stabilité électrochimique réduite. Le travail de thèse porte dans un premier temps sur la sélection des différents éléments constituant un accumulateur Li-ion aqueux: choix de l'électrolyte, des collecteurs de courant, des liants d'électrode et des matériaux d'électrode. Les performances électrochimiques en milieu aqueux de différents composés d'insertion du lithium ont été évaluées. Afin d'augmenter la fenêtre de stabilité électrochimique de l'électrolyte aqueux, la passivation des électrodes par réduction de sels de diazonium a été réalisée. L'influence de la nature des sels de diazonium et de l'épaisseur des films sur les performances électrochimiques des électrodes a été évaluée par diverses techniques, voltampérométrie et impédance électrochimique. Les résultats obtenus montrent l'impact positif des dépôts obtenus vis-à-vis de l'augmentation de la surtension de réduction de l'eau. Ces travaux ouvrent la voie à des perspectives prometteuses sur cette technologie Li-Ion aqueuse. / The use of aqueous electrolytes should permit to improve power performances and decrease significantly the battery cost. Moreover, these kind of electrolytes guarantee a safely use with reduced consequence on the environment. This technology use active materials enable to inserted and deinserted lithium ion. But the choice of lithium insertion compounds was guided and limited by the water electrochemical stability. We selected each component of the Li-ion cell which could be used in aqueous electrolyte; the lithium salt, the binder and the active material. The electrochemical performances of several active materials in aqueous electrolyte were evaluated. In order to increase the Li-ion cell tension, a passive film was form on the electrode surface by diazonium salt reduction. Influence of molecule design and film thickness were studied by voltammetry and electrochemical impedance spectroscopy. The results clearly show the interest of the formation of these films for lowering the reduction potential of water on glassy carbon and practical Li-ion electrode. This study opens very promising route for the aqueous lithium batteries.
|
4 |
Electrodeposition of reactive metals and alloys from non-aqueous electrolytes and their applications / 非水系電解浴を用いる活性金属および合金の電析とその応用Higashino, Shota 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第22798号 / エネ博第412号 / 新制||エネ||79(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー応用科学専攻 / (主査)教授 平藤 哲司, 教授 土井 俊哉, 教授 馬渕 守 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
|
5 |
BUILDING BETTER AQUEOUS ZINC BATTERIESMing, Fangwang 22 March 2022 (has links)
Aqueous zinc ion storage system has been deemed as one of the most promising alternatives due to its high capacity of zinc metal anode, low cost, and high safety characteristics. Recently, significant attempts have been made to produce highperformance aqueous Zn batteries. (AZBs) and great progress has been achieved. Yet there are a lot of issues still exist and need to be further optimized. In this thesis, we proposed several strategies to tackle these challenges and finally optimize the overall battery performance, including metal anode protection, cathode structural engineering, and rational electrolyte design.
In the present thesis, we first developed the ZnF2 layer coated Zn metal anode via a simple plasma treatment method. The plasma treated Zn anode leads to dendrite-free Zn electrodeposition with lower overpotential. Density function theory calculation results demonstrate that the Zn diffusion energy barrier can be greatly reduced on the ZnF2 surface. Benefiting from these merits, the symmetric cell and full cell exhibited much improved electrolchemical performance and stability. Afterthen, We synthesised a layered Mg2+-intercalated V2O5 as the cathode material for AZBs. The large interlayer spacing reachs up to 13.4 A, allowing for efficient Zn2+ (de)insertion. As a result, the porous Mg0.34V2O5・nH2O cathodes can provide high capacities as well as long-term durability. We then recongnized that most of the parasitic side reactions are related to the aqueous electrolyte. We therefore further designed a hybrid electrolyte to realize the anode-free Zn metal batteries. It is demonstrated that in the presence of propylene carbonate, triflate anions are involved in the Zn2+ solvation sheath structure. The unique solvation structure results in the reduction of anions, thus forming a hydrophobic solid electrolyte interphase. Consequently, in the hybrid electrolyte, both Zn anodes and cathodes show excellent stability and reversibility. More importantly, we design an anode-free Zn metal battery, which exhibits good cycling stability (80% capacity retention after 275 cycles at 0.5 mA cm–2).
|
6 |
Studies on Electrochemical Reactions Using Concentrated Aqueous Electrolytes / 濃厚電解質水溶液環境における電気化学反応に関する研究Inoguchi, Shota 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23199号 / 工博第4843号 / 新制||工||1756(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 邑瀬 邦明, 教授 宇田 哲也, 教授 作花 哲夫 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
7 |
Investigation of mechanisms governing charge transfer in redox-active organic moleculesShaheen, Nora Adel 27 January 2023 (has links)
No description available.
|
8 |
Simulating Osmotic Equilibria by Molecular Dynamics - From Vapor-Liquid Interfaces to Thermodynamic Properties in Concentrated Solutions / Simulation des Équilibres Osmotiques par la Dynamique Moléculaire - Des Interfaces Vapeur-Liquide aux Propriétés Thermodynamiques dans les Solutions Concentrées.Bley, Michael 21 November 2018 (has links)
L’objectif de cette thèse de doctorat est le développement d’une nouvelle méthode théorique basée sur la simulation des équilibres liquide-gaz par simulations de dynamique moléculaire. Cette nouvelle m´méthode prédit les propriétés thermodynamiques telles que l’activité des solvants et les coefficients d’activité des solutés en phases aqueuses et organiques impliquées dans les systèmes d’extraction liquide-liquide. Ces propriétés thermodynamiques sont nécessaires pour les approches de modélisation thermodynamique mésoscopique permettant d’estimer l’efficacité et la s´électivité d’un système d’extraction par solvant jusqu’au une échelle industrielle. Les propriétés thermodynamiques et structurales des solutions électrolytiques aqueuses et des phases organiques, y compris les agrégats résultant des molécules d’extraction des amphiphiles, sont en bon accord avec les données expérimentales et théoriques disponibles. L’approche de dynamique moléculaire de l’équilibre osmotique fournit un nouvel outil puissant permettant d’accéder aux données thermodynamiques. / The aim of this PhD thesis is the development of a new theoretical method based on the simulation of vapor-liquid equilibria by means of molecular dynamics (MD) simulation. This new method predicts thermodynamic properties such as solvent activities and solute activity coefficients of aqueous and organic phases used in liquid-liquid extraction systems. These thermodynamic properties are required for mesoscopic thermodynamic modeling approaches estimating the efficiency and selectivity of a given solvent extraction system up to an industrial scale. Thermodynamic and structural properties of aqueous electrolyte solutions and organic solvent phase including aggregates resulting from amphiphilic extractant molecules are reproduced in very good agreement with previously available experimental and theoretical data. The osmotic equilibrium MD approach provides a new and powerful tool for accessing thermodynamic data
|
9 |
Oxydes polycationiques pour supercondensateurs à haute densité d'énergie volumique / Polycationic oxides for supercapacitors with high volumetric energy densityLannelongue, Pierre 21 November 2018 (has links)
Les supercondensateurs sont des dispositifs de stockage électrochimique de l’énergie très intéressants lorsque des pics de puissance sont mis en jeu. Toutefois, leur densité d’énergie volumique est la principale limite pour leur intégration, en particulier, dans des systèmes de transport terrestre. L’utilisation de matériaux d’électrode ayant un comportement pseudocapacitif et des masses volumiques élevées permettrait d’améliorer la densité d’énergie volumique des supercondensateurs. Avec cet objectif, des dispositifs à base des matériaux de la famille Ba0,5Sr0,5CoxFe1-xO3-δ, nommés BSCFs, ont été développés dans le cadre de cette thèse. Plusieurs compositions de cette famille d’oxydes ont été préparées par un procédé glycine-nitrate et ont été testés comme matériau actif d’électrode positive en milieu aqueux neutre. La capacité volumique de ces matériaux s’avère être beaucoup plus élevée que celle des carbones activés utilisés dans les supercondensateurs commerciaux. Elle a montré également dépendre de la composition en cobalt et en fer, du régime de charge, de la nature de l’électrolyte… Le mécanisme de stockage de charges dans ces matériaux a été exploré grâce à des techniques in situ (absorption des rayons X) et operando (diffraction des rayons X) effectuées aux synchrotrons SOLEIL (France) et SPring-8 (Japon). Enfin, des dispositifs associant une électrode positive à base de BSCF et du carbone activé ou FeWO4 en tant qu’électrode négative ont démontré l’intérêt d’intégrer de tels matériaux pour améliorer la densité d’énergie volumique des supercondensateurs. / Supercapacitors are attractive electrochemical energy storage devices for high power applications. However, volumetric energy density is the main limitation for their integration in such applications as terrestrial transport systems. The use of high density pseudocapacitive oxides as electrode material could lead to a volumetric energy density improvement. With this aim, materials from Ba0,5Sr0,5CoxFe1-xO3-δ family, so called BSCFs, have been studied. Several compositions have been prepared and evaluated as positive electrode materials in aqueous neutral electrolyte. Volumetric capacitances have shown to be greater than those of activated carbons, already used in marketed supercapacitors. They have also shown to depend on cobalt and iron ratio, charge rate, electrolyte composition... The study of the charge storage mechanism in these materials has been investigated thanks to in situ (X-Ray absroption spectroscopy) and operando (X-Ray diffraction) technics performed at SOLEIL (France) and SPring-8 (Japan) synchrotron facilities. Finally, devices coupling BSCF based positive electrode material with activated carbon or FeWO4 based negative electrode materials have demonstrated the added value of such materials to improve the volumetric energy density of supercapacitors.
|
10 |
Nanoporous Carbons: Porous Characterization and Electrical Performance in Electrochemical Double Layer CapacitorsCaguiat, Johnathon 21 November 2013 (has links)
Nanoporous carbons have become a material of interest in many applications such as electrochemical double layer capacitors (supercapacitors). Supercapacitors are being studied for their potential in storing electrical energy storage from intermittent sources and in use as power sources that can be charged rapidly. However, a lack of understanding of the charge storage mechanism within a supercapacitor makes it difficult to optimize them. Two components of this challenge are the difficulties in experimentally characterizing the sub-nanoporous structure of carbon electrode materials and the electrical performance of the supercapacitors. This work provides a means to accurately characterize the porous structure of sub-nanoporus carbon materials and identifies the current limitations in characterizing the electrical performance of a supercapacitor cell. Future work may focus on the relationship between the sub-nano porous structure of the carbon electrode and the capacitance of supercapacitors, and on the elucidation of charge storage mechanisms.
|
Page generated in 0.0588 seconds