• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lithospheric Structure of the Pampean Flat Slab (Latitude 30-33S) and Northern Costa Rica (Latitude 9-11N) Subduction Zones

Linkimer Abarca, Lepolt January 2011 (has links)
The Pampean flat slab subduction in west-central Argentina (latitude 30-33S) and the steeply dipping Northern Costa Rica subduction zone (latitude 9-11N) show significant along-trench variations in both the subducting and overriding plates. This dissertation contains the results of three seismological studies using broadband instruments conducted in these subduction zones, with the aim of understanding the structure of the lithosphere and the correlation between the variability observed in the downgoing and the overriding plates. In the Costa Rica region, by analyzing teleseismic receiver functions we investigate the variability in the hydration state of the subducting Cocos Plate and the nature of three distinct crustal terranes within the overriding Caribbean Plate: the Nicoya and Chorotega terranes that display an oceanic character, and the Mesquito Terrane, which is more compatible with continental crust.In the Pampean region of Argentina, we apply a regional-scale double-difference tomography algorithm to earthquake data recorded by the SIEMBRA (2007-2009) and ESP (2008-2010) broadband seismic networks to obtain high-resolution images of the South America lithosphere. We find that most of the upper mantle has seismic properties consistent with a depleted lherzolite or harzburgite, with two anomalous regions above the flat slab: a higher Vp/Vs ratio anomaly consistent with up to 10% hydration of mantle peridotite and a localized lower Vp/Vs ratio anomaly consistent with orthopyroxene enrichment. In addition, we study the geometry and brittle deformation of the subducting Nazca Plate by determining high-quality earthquake locations, slab contours, and focal mechanisms. Our results suggest that the subduction of the incoming Juan Fernandez Ridge controls the slab geometry and that ridge buoyancy and slab pull are key factors in the deformation of the slab. The spatial distribution of the slab seismicity suggests variability in the hydration state of the subducting Nazca Plate and/or in strain due to slab bending. These observations support the hypothesis that the along-trench variability in bathymetric features and hydration state of the incoming plate has profound effects in the subducting slab geometry and the upper plate structure in both flat and steeply dipping subduction zones.
2

Lithospheric Structure Across the Northern Canadian Cordillera from Teleseismic Receiver Functions

Ashoori Pareshkoohi, Azadeh January 2016 (has links)
A major change in seismic velocities between Earth’s crust and mantle is known as the Mohorovicic discontinuity (Moho). The depth of the Moho plays an important role in characterizing the overall structure of the crust and can be related to the tectonic setting of a region. Teleseismic P-wave receiver function techniques can provide estimates of the depth of the Moho and therefore crustal thickness under a broadband station. In this research we are interested in the structure of the crust and mantle across the northern Canadian cordillera, described by various tectonic settings. The teleseismic data recorded by broadband three-component seismic stations are used to perform receiver function analysis to determine the lateral variations of Moho depth under northern Canadian cordillera and map out the crustal thickness under the broadband stations. Based on visual inspection of receiver function results in the region, we find evidence of anisotropy or dipping reflectors in the crustal structure of the northern cordillera observed in back-azimuthal variations of transverse component receiver functions. We further provide a quantitative interpretation of receiver function in terms of anisotropy or dipping structure by decomposing the azimuthal variations of depth migrated receiver functions into back-azimuthal harmonics. This technique can be used to map out the orientation of anisotropy that may be related to cracks and/or rock texture caused by deformation. We resolve the Moho at an average depth of ~35 km along the western profile of the study area. Harmonic decomposition along the study area yields crustal anisotropy at depth 5-20 km, which does not extend in the lower crust. This can be the result of complex deformation at a detachment zone like a quasi-rigid displacement of the upper crust over a lower crust. The detected anisotropy over the study area is not coherent as the slow symmetry directions detected by harmonic decomposition are highly variable.
3

Crustal and Upper Mantle Structure of the Anatolian Plate: Imaging the Effects of Subduction Termination and Continental Collision with Seismic Techniques

Delph, Jonathan, Delph, Jonathan January 2016 (has links)
The neotectonic evolution of the eastern Mediterranean is intimately tied to interactions between the underthrusting/subducting slab along the southern margin of Anatolia and the overriding plate. The lateral variations in the subduction zone can be viewed as a temporal analogue of the transition between continuous subduction and subduction termination by continent-continent collision. By investigating the lateral variations along this subduction zone in the overriding plate, we can gain insight into the processes that precede continent collision. This dissertation summarizes the results of three studies that focus on different parts of the subduction margin: 1) In the west, where the development of a slab tear represents the transition between continuous and enigmatic subduction, 2) In the east, where continent-continent collision between the Arabian and Eurasian Plate is leading to the development of the third largest orogenic plateau on earth after complete slab detachment, and 3) In central Anatolia, where the subducting slab is thought to be in the processes of breaking up, which is affecting the flow of mantle material leading to volcanism and uplift along the margin. In the first study, we interpret that variations in the composition of material in the downgoing plate (i.e. a change from the subduction of oceanic material to continental material) may have led to the development of a slab tear in the eastern Aegean. This underthrusting, buoyant continental fragment is controlling overriding plate deformation, separating the highly extensional strains of western Anatolia from the much lower extensional strains of central Anatolia. Based on intermediate depth seismicity, it appears that the oceanic portion of the slab is still attached to this underthrusting continental fragment. In the second study, we interpret that the introduction of continental lithosphere into the north-dipping subduction zone at the Arabian-Eurasian margin led to the rollback and eventual detachment of the downgoing oceanic lithosphere attached to the Arabian Plate. After detachment, high rates of exhumation in the overriding plate are recorded due to the removal of the oceanic lithosphere and accompanying rebound of the Arabian continental lithosphere. In the third study, we image a transitional stage between the complete slab breakoff of the second study and the continuous subduction slab of the first study. We interpret that trench-perpendicular volcanism and ~2 km of uplift of flat-lying carbonate rocks along the southern margin of Turkey can be attributed to the rollback and ongoing segmentation of the downgoing slab as attenuated continental material is introduced into the subduction zone. Combining these three studies allows us to understand the terminal processes of a long-lived subduction zone as continental material is introduced.
4

Dynamics of the eastern edge of the Rio Grande Rift

Xia, Yu 05 November 2013 (has links)
The Western U.S. has experienced widespread extension during the past 10’s of millions of years, largely within the Basin and Range and Rio Grande Rift provinces. Tomography results from previous studies revealed narrow fast seismic velocity anomalies in the mantle on either side of the Rio Grande Rift as well as at the western edge of the Colorado Plateau. The fast mantle anomalies have been interpreted as down-welling that is part of small scale mantle convection at the edge of extending provinces. It was also found that crust was thicker than average ab¬¬ove the possible mantle down-welling, indicating that mantle dynamics may influence crustal flow. We present results from P/S conversion receiver functions using SIEDCAR (Seismic Investigation of Edge Driven Convection Associated with the Rio Grande Rift) data to determine crustal and lithospheric structure beneath the east flank of the Rio Grande Rift. Crustal and lithosphere thickness are estimated using P-to-S and S-to-P receiver functions respectively. Receiver function migration methods were applied to produce images of the crust and lithosphere. The results show variable crustal thickness through the region with an average thickness of 45 km. The crust achieves its maximum thickness of 60km at 105W longitude, between 33.5N and 32.2N latitude. This observation confirms previous receiver function results from Wilson et al, 2005. Body wave tomography (Rocket, 2011; Schmandt and Humphreys, 2010) using similar data to what we used for the receiver function analysis, shows mantle downwelling closely associated with the thickened crust. We believe that the thickened crust might be due to lower crustal flow associated with mantle downwelling or mantle delamination at the edge of the Rio Grande Rift. In this model the sinking mantle pulls the crust downward causing a pressure gradient within the crust thus causing the flow. Our S-P images show signal from the lithosphere-asthenosphere boundary (LAB) with an average LAB thickness of 100 km but with a sharp transition at about 1050 W from 75 km to over 100 km. The region with abnormally thick crust overlies a region where the lithosphere appears to have a break. We interpret our results as showing that lower lithosphere has and is delaminating near the edge of the Great Plains accompanied by lower crustal flow in some places determined by lower crustal viscosity. / text

Page generated in 0.0547 seconds