• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of Aquatic Acidification on Calcium Uptake in White River Shrimp Litopenaeus setiferus Gills

Jacobs, Maria-Flora 01 January 2019 (has links)
Previous research regarding aquatic acidification has examined the protonation of the carbonate and does not consider calcium to be a limiting factor. This is the first study to suggest that pH may affect the uptake of calcium in crustacean gills. This project describes ion transport mechanisms present in the cell membranes of white river shrimp Litopenaeus setiferus gill epithelium, and the effects of pH on the uptake of calcium by these means. Partially purified membrane vesicles (PPMV) of shrimp gills were prepared through a homogenization process that has been used previously to define ion transport in crab and lobster gill tissues. In the current study, shrimp gill PPMV calcium uptake at 50 µM, and 250 µM was greatest at pH 7.0 (p=0.01, p=0.0001). A valinomycin/K+ induced membrane potential (PD) at pH 7.0 significantly increased (p=0.003) calcium uptake from that observed in the absence of a PD. An induced PD at pH 8.0 significantly increased (p=0.003) calcium uptake from that observed in the absence of a PD, however, was not significantly greater than uptake at pH 7.0 in the presence of a PD (p=0.05). Amiloride (2mM) treatments, and amiloride (2mM) + verapamil (100µM) cocktail treatments showed significant decrease in calcium uptake from the control (p=0.03), however, they were not different from each other. This indicates an electrogenic carrier with two driving forces: calcium concentration, and asymmetric exchange stoichiometry.

Page generated in 0.0803 seconds