• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assessment of the Expression of Brucella Abortus Heat Shock Protein, Groel, in Vaccinia Virus to Induce Protection Against a Brucella Challenge in Balb/C Mice

Baloglu, Simge 29 August 1997 (has links)
B. abortus is an intracellular facultative bacterial pathogen which causes abortion in cattle and undulant fever in humans. Cattle vaccines such as B. abortus strains 19 and RB51 are live vaccine strains which protect approximately 75% of the vaccinated animals. No effective vaccines are available for the prevention of brucellosis in humans. We are developing vaccinia virus recombinants expressing various B. abortus proteins to prevent brucellosis in susceptible mammalian species. In this work the B. abortus groEL gene encoding the antigenic heat shock protein GroEL was subcloned into vaccinia virus via homologous recombination. Expression of the GroEL protein in vaccinia infected cells in-vivo was confirmed by immunoblotting. Groups of 5 female BALB/C mice were injected with the vaccinia recombinant or appropriate positive and negative control vaccines. Mice were bled and their humoral immune responses assessed. In addition, mice were challenged with virulent B. abortus strain 2308 and protection measured by the rate of splenic clearance of live Brucella. In spite of demonstrating specific GroEL antibodies in recombinant vaccinia injected mice, no significant level of protection was demonstrable. Preliminary lymphocyte transformation assays were carried out to establish if a cell mediated immune response to GroEL was induced in the vaccinated animals. / Master of Science
2

Influence of recombinant passenger properties and process conditions on surface expression using the AIDA-I autotransporter

Gustavsson, Martin January 2013 (has links)
Surface expression has attracted much recent interest, and it has been suggested for a variety of applications. Two such applications are whole-cell biocatalysis and the creation of live vaccines. For successful implementation of these applications there is a need for flexible surface expression systems that can yield a high level of expression with a variety of recombinant fusion proteins. The aim of this work was thus to create a surface expression system that would fulfil these requirements.   A novel surface expression system based on the AIDA-I autotransporter was created with the key qualities being are good, protein-independent detection of the expression through the presence of two epitope tags flanking the recombinant protein, and full modularity of the different components of the expression cassette. To evaluate the flexibility of this construct, 8 different model proteins with potential use as live-vaccines or biocatalysts were expressed and their surface expression levels were analysed.   Positive signals were detected for all of the studied proteins using antibody labelling followed by flow cytometric analysis, showing the functionality of the expression system. The ratio of the signal from the two epitope tags indicated that several of the studied proteins were present mainly in proteolytically degraded forms, which was confirmed by Western blot analysis of the outer membrane protein fraction. This proteolysis was suggested to be due to protein-dependent stalling of translocation intermediates in the periplasm, with indications that larger size and higher cysteine content had a negative impact on expression levels. Process design with reduced cultivation pH and temperature was used to increase total surface expression yield of one of the model proteins by 400 %, with a simultaneous reduction of proteolysis by a third. While not sufficient to completely remove proteolysis, this shows that process design can be used to greatly increase surface expression. Thus, it is recommended that future work combine this with engineering of the bacterial strain or the expression system in order to overcome the observed proteolysis and maximise the yield of surface expressed protein. / <p>QC 20130516</p>
3

Surface expression using the AIDA autotransporter :  Towards live vaccines and whole-cell biocatalysis

Gustavsson, Martin January 2011 (has links)
The area of surface expression has gathered a lot of interest from research groups all over the world and much work is performed in the area. Autotransporters have been used for surface expression in Gram-negative bacteria. One of the more commonly used autotransporters is the Adhesin Involved in Diffuse Adherence (AIDA) of pathogenic Escherichia coli. The surface expression of enzymes and vaccine epitopes offer several advantages. Surface expressed enzymes gain similar properties to immobilised enzymes, mainly simplified handling and separation using centrifugation. Surface expressed vaccine epitopes can have longer half-lives inside the animal that is to be immunized and surface groups on the host cell can act as adjuvants, increasing the immune response and leading to a better immunisation.    However, while much basic research is directed towards mechanisms of surface expression using autotransporters there are few reports regarding production of surface expressed protein. Thus the aim of this work was the optimisation of the yield and productivity of surface expressed protein. Protein Z, an IgG-binding domain of Staphylococcal protein A, was used as a model protein for the investigation of which cultivation parameters influenced surface expression. The choice of cultivation medium gave the largest impact on expression, which was attributed to effects based on the induction of the native promoter of AIDA. The AIDA system was then used for the expression of two Salmonella surface proteins, SefA and H:gm, with potential for use as vaccine epitopes. SefA was verified located on the cell surface, and H:gm was found in the outer membrane of the host cell, though only in proteolytically truncated forms lacking the His6-tag used for detection. This proteolysis persisted in E. coli strains deficient for the outer membrane protease OmpT and was concluded to be dependent on other proteases. The removal of proteolysis and further optimisation of the yield of surface-expressed protein are important goals of further work. / QC 20111123 / Vinnova: BIO-AMINES / SIDA Vietnam: Production of viral proteins for vaccine development
4

Selection of novel antigens from Leishmania spp. and design of live recombinant salmonella vaccines against experimental visceral leishmaniasis

Schroeder, Juliane 14 April 2011 (has links)
Leishmaniosen gehören zu den tropischen Krankheiten und bedrohen geschätzte 350 Millionen Menschen in 88 Ländern weltweit. Die schwerste Form, viszerale Leishmaniose, betrifft die ärmsten Bevölkerungsschichten und ist die Ursache für circa 50 000 Todesfälle pro Jahr. Es wird angenommen, dass die Entwicklung eines Impfstoffs möglich ist, aber trotz aller Bemühungen, steht derzeit noch kein Impfstoff zur Verfügung. Im Rahmen dieser Arbeit wurde ein Impfstoff gegen viszerale Leishmaniose entwickelt und in vivo auf pre-klinischer Ebene getestet. Des Weiteren wurden rekombinante Membranvesikel konstruiert, um ein Boostreagenz zu erhalten. Die Herstellung sowohl des rekombinanten Salmonellenimpfstoffs als auch der Membranvesikel sollte, trotz des geringen Handelspreis, ökonomisch praktikabel sein, was besonders wichtig ist für Menschen in den betroffenen Entwicklungsländern. Der erste Schritt war die Auswahl neuartiger Antigenkandidaten aus einem Proteomics Datensatz, in dem beide Leishmania Lebensformen verglichen wurden. Der Schwerpunkt wurde auf abundante, hypothetische Proteine gelegt, die sowohl in Pro- als auch Amastigoten identifiziert wurden, in Leishmanienarten hochkonserviert sind aber gleichzeitig keine Sequenzhomologien zu humanen und murinen Proteinen besitzen. Diese Antigene wurden in unterschiedlicher Menge auf der Oberfläche und im Cytoplasma von S. typhimurium SL3261 und auch auf Membranvesikeln exprimiert. Impfstämme wurden selektiert in Hinsicht auf ihre bakterielle Fitness und Antigenexpression. Es konnte gezeigt werden, dass LinJ08.1140-, LinJ23.0410-exprimierende Impfstämme oder eine Mischung dieser in der Lage waren besonders anfällige BALB/c Mäuse vor L. major und wichtiger L. donovani Infektion zu schützen. Analyse der humoralen Immunantwort deutet darauf hin, dass der Impfschutz das Ergbnis einer TH1 Antwort war. Erste Schritte zur Aufklärung struktureller und funktioneller Eigenschaften von LinJ08.1140 wurden unternommen. Es wird allgemein angenommen, dass antigenspezifische CD4+ und CD8+ T-Zellen am Schutz beteiligt sind. Daher wurde für LinJ08.1140 potentielle MHC-I Epitope mit Hilfe von bioinformatischen Programmen vorhergesagt. Zusätzlich deuten Fluoreszenz-färbungen mit antigenspezifischen Antikörpern in L. major Promastigoten darauf hin, dass LinJ08.1140 eine Rolle bei der Zellteilung spielt. / Leishmaniasis is a neglected tropical disease and currently an estimated 350 million people in 88 countries around the world are at risk. Its most severe form, visceral leishmaniasis, affects the poorest people in a population and causes an estimated 50 000 deaths every year. Vaccination is thought to be feasible but despite all efforts, no vaccine is yet available. Vaccines will mainly be targeted for people in developing countries such as India, thus focus has to be placed on affordability. In this thesis a vaccine against visceral leishmaniasis was designed and evaluated in vivo at pre-clinical level. Furthermore, recombinant outer membrane vesicles were developed in an attempt to create a booster reagent. Both, the recombinant salmonella vaccine and the preparation of outer membrane vesicles should be commercially viable, and can still be sold at low prices, which is crucial for people in developing countries. First, novel antigen candidates were selected using proteomics data comparing leishmania life stages. Abundant and hypothetic proteins, which have been identified in both parasite life stages and have high sequence homology throughout Leishmania species while lacking homologues in human and mouse, were selected. These antigens were differentially expressed on the surface or in the cytosol of S. typhimurium SL3261 and in the form of outer membrane vesicles. A two step procedure was developed to select optimised vaccine strains based on bacterial fitness and antigen expression. Selected salmonella strains expressing LinJ08.1140, LinJ23.0410 or an admixture of these strains are shown to protect susceptible BALB/c mice by reducing visceralisation of L. major and more importantly L. donovani infections. Analysis of vaccine specific antibody responses suggests that protection resulted from induction of a TH1 response. First steps were undertaken towards resolving functional and structural properties of the most protective antigen LinJ08.1140. Putative MHC-I epitopes of antigen LinJ08.1140 were predicted using bioinformatics since antigen-specific CD4+ and CD8+ T cells are believed to be required. In addition, immunofluorescent staining of LinJ08.1140 in L. major promastigotes suggested a functional role for this antigen in parasite cell division, since especially dividing cells emmited a strong fluorescence signal.

Page generated in 0.0381 seconds