• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterisation of the biophysical and pathophysiological effects of hepatic cryosurgery

林志明, Lam, Chi-ming. January 1996 (has links)
published_or_final_version / Surgery / Master / Master of Surgery
2

Toll-like receptor-4 mediates obesity-induced nonalcoholic steatohepatitis through activation of X-box binding protein-1 in mice

Ye, Dewei., 叶得伟. January 2012 (has links)
Background and objectives: Nonalcoholic steatohepatitis (NASH), which is characterized by concurrent existence of hepatic steatosis and predominantly lobular necroinflammation, represents the more advanced stage in the spectrum of nonalcoholic fatty liver disease (NAFLD). NASH exhibits dramatically increased risk of progression to end-stage liver diseases than simple steatosis. Therefore, the progression of hepatic steatosis to steatohepatitis is the crucial step in the development of obesity-related NASH. Toll like receptor 4 (TLR4), a master regulator of innate immunity, is the principal receptor for endotoxin, which is a central mediator of liver inflammation associated with both alcoholic and nonalcoholic liver disease. However, due to a lack of suitable animal models which fully recapitulate the natural history of obesity-induced NASH, the precise pathophysiological function of TLR4 signaling in the development of this disease remains poorly understood. The objective of this study is to investigate the role of TLR4 in mediating inflammatory responses in obesity-induced NASH using both in vivo and ex vivo approaches, and to unveil cellular and molecular mechanisms responsible for TLR4 actions. Key findings: 1. To address the role of TLR4 in the pathogenesis of NASH, we crossed ApoEdeficient mice (ApoE-/-) with TLR4 mutant mice (TLR4-/-) to generate ApoE-/- /TLR4 wild type mice (ApoE-/-/TLR4-WT) and ApoE-/-/TLR4-/- mice. Noticeably, when fed with high fat high cholesterol (HFHC) diet, ApoE-/-/TLR4-WT mice developed the typical pathology of NASH (hepatic steatosis, lobular inflammation, and hepatocyte ballooning) in the context of obesity and metabolic syndrome, suggesting HFHC-fed ApoE-/- mice as a suitable animal model for NASH. 2. TLR4 inactivation protected ApoE-/- mice against HFHC diet-induced liver injury, as indicated by a significant improvement in liver histology, a a marked reduction in serum ALT activity, a dramatic repression of inflammatory infiltrates, as well as an obvious decrease in hepatic production of pro-inflammatory cytokines. 3. In ApoE-/-/TLR4-WT mice, TLR4 expression was selectively elevated in Kupffer cells in response to HFHC diet feeding. 4. The activation of XBP1, a transcription factor involved in endoplasmic reticulum stress, was markedly elevated in liver of ApoE-/-/TLR4-WT mice fed with HFHC diet, whereas this change was abrogated in HFHC diet-fed ApoE-/-/TLR4-/- mice. 5. In rat primary Kupffer cells, treatment with anti-oxidants blocked endotoxininduced activation of XBP1 and NF-κB, leading to decreased cytokine production. In addition, siRNA-mediated knockdown of XBP1 inhibited NF-κB activation and cytokine production resulted from the treatment with the TLR4 agonist LPS. 6. In ApoE-/-/TLR4-WT mice, adenovirus-mediated expression of dominant negative XBP1 had no obvious effect on HFHC diet-induced hepatic steatosis and ROS production, but markedly decreased lobular inflammation, NF-κB activation, cytokine production in the liver and significantly reduced serum levels of ALT. Conclusions: These findings support the role of TLR4 in Kupffer cells as a key player in mediating the progression of simple steatosis to NASH, by inducing ROS-dependent activation of XBP1. In light of the obligatory role of XBP1 in TLR4-induced liver inflammation and injury, therapeutic interventions that inhibit TLR4/XBP1 activation may represent a promising strategy for treatment of NASH. / published_or_final_version / Medicine / Doctoral / Doctor of Philosophy
3

Cadmium-induced Cytotoxicity in a Zebrafish Liver Cell-line ZFL. / CUHK electronic theses & dissertations collection

January 2012 (has links)
Zhu, Jinyong. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 128-139). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.

Page generated in 0.0747 seconds