• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

AN EVALUATION OF THE NEWBORN MOUSE AS A POTENTIAL MODEL FOR THE BIOASSAY OF LIVER CARCINOGENESIS USING HISTOLOGICAL AND HISTOCHEMICAL MARKERS.

Cater, Kathleen Carmelle. January 1982 (has links)
No description available.
2

The kringle 1 domain of hepatocyte growth factor exerts both anti-angiogenic and anti-tumor cell effects on hepatocellular carcinoma

Shen, Zan., 沈贊. January 2008 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
3

Identification of liver tumour-initiating cells using a chemoresistantanimal model

Castilho, Antonia Genevieve. January 2010 (has links)
published_or_final_version / Pathology / Master / Master of Philosophy
4

Significance of LRP6 coreceptor upregulation in the aberrant activation of Wnt signaling in hepatocellular carcinoma

Wong, Yin-chi, Betty., 黃妍之. January 2008 (has links)
published_or_final_version / Pathology / Master / Master of Philosophy
5

Role of microRNA-709 in murine liver

Surendran, Sneha January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / MicroRNAs are small RNA molecules that regulate expression of genes involved in development, cell differentiation, proliferation and death. It has been estimated that in eukaryotes, approximately 0.5 to 1% of predicted genes encode a microRNA, which in humans, regulate at least 30% of genes at an average of 200 genes per miRNA. Some microRNAs are tissue-specific, while others are ubiquitously expressed. In liver, a few microRNAs have been identified that regulate specialized functions. The best known is miR-122, the most abundant liver-specific miRNA, which regulates cholesterol biosynthesis and other genes of fatty acid metabolism; it also regulates the cell cycle through inhibition of cyclin G1. To discover other miRNAs with relevant function in liver, we characterized miRNA profiles in normal tissue and identified miR-709. Our data indicates this is a highly abundant hepatic miRNA and is dysregulated in an animal model of type 2 diabetes. To understand its biological role, miR-709 gene targets were identified by analyzing the transcriptome of primary hepatocytes transfected with a miR-709 mimic. The genes identified fell within four main categories: cytoskeleton binding, extracellular matrix attachment, endosomal recycling and fatty acid metabolism. Thus, similar to miR-122, miR-709 downregulates genes from multiple pathways. This would be predicted, given the abundance of the miRNA and the fact that the estimated number of genes targeted by a miRNA is in the hundreds. In the case of miR-709, these suggested a coordinated response during cell proliferation, when cytoskeleton remodeling requires substantial changes in gene expression. Consistently, miR-709 was found significantly upregulated in an animal model of hepatocellular carcinoma. Likewise, in a mouse model of liver regeneration, mature miR-709 was increased. To study the consequences of depleting miR-709 in quiescent and proliferating cells, primary hepatocytes and hepatoma cells were cultured with antagomiRs (anti-miRs). The presence of anti-miR-709 caused cell death in proliferating cells. Quiescent primary hepatocytes responded by upregulating miR-709 and its host gene, Rfx1. These studies show that miR-709 targets genes relevant to cystokeleton structural genes. Thus, miR-709 and Rfx1 may be needed to facilitate cytoskeleton reorganization, a process that occurs after liver injury and repopulation, or during tumorigenesis.

Page generated in 0.0827 seconds