1 |
Improving the Electro-Chemo-Mechanical Properties of LIXMN2O4 Cathode Material Using Multiscale ModelingTyagi, Ramavtar January 2022 (has links)
Electrochemical Energy Storage Systems are a viable and popular solution to
fulfill energy storage requirements for energy generated through sustainable
energy resources. With the increasing demand for Electrical Vehicles (EVs),
Lithium-ion batteries (LIB) are being widely and getting popular compared
to other battery technologies due to their energy storage capacity. However,
LIBs suffer from disadvantages such as battery life and the degradation of
electrode material with time, that can be improved by understanding these
mechanisms using experimental and computational techniques. Further, it has
been experimentally observed and numerically determined that lithium-ion
intercalation induced stress and thermal loading can cause capacity fading and
local fractures in the electrode materials. These fractures are one of the major
degradation mechanisms in Lithium-ion batteries. With LixMn2O4 as a cathode material, stress values differ widely especially
for intermediate State Of Charge (SOC), and very few attempts have been made
to understand the stress distribution as a function of SOC at molecular level.
Therefore, the estimates of mechanical properties such as Young’s modulus,
diffusion coefficient etc. differ, especially for partially charged states. Further, the
effect of temperature, particularly elevated temperatures, have not been taken
into the consideration. Studying these parameters at the atomic scale can provide
insight information and help in improving these materials lifetime. Hence,
molecular/atomic level mathematical modelling has been used to understand
capacity fade due to Lithium-ion intercalation/de-intercalation induced stress.
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [1], that is widely used for atomic simulations, has been used for the simulation studies
of this dissertation.
Thus, the objective of this study is to understand the fracture mechanisms
in the Lithium Manganese Oxide (LiMn2O4) electrode at the molecular level by
studying mechanical properties of the material at different SOC values using
the principles of molecular dynamics (MD). As part of the model validation,
the lattice parameter and volume changes of LixMn2O4 as a function of SOC
(0 < x < 1) has been studied and validated with respect to the experimental data.
This validated model has been used for a parametric study involving the SOC
value, strain-rate (charge and discharge rate), and temperature. Based on the
validated MD setup, doping and co-doping studies have been undertaken to
design and develop new and novel cathode materials with enhanced properties.
In the absence of experimental data for the new engineered structures, validation
with Quantum Mechanics generated lattice structures has been done. The results
suggest that lattice constant values obtained from both MD and QM simulations
are in good agreement (∼ 99%) with experimental values. Further, Single Particle
Model (SPM) based macro scale Computational Fluid Dynamics findings show
that co-doping has improved the material properties especially for Yttrium and
Sulfur doped structures which can improve the cycle life anywhere between
600-7000 cycles. Further in order to reduce the required computational time to
obtain minimum potential energy ionic configuration out of millions of scenario,
Artificial Neural Network (ANN) technique is being used. It improved the
processing time by more than 88%. / Thesis / Doctor of Philosophy (PhD)
|
2 |
Diagnosis of the Lifetime Performance Degradation of Lithium-Ion Batteries : Focus on Power-Assist Hybrid Electric Vehicle and Low-Earth-Orbit Satellite ApplicationsBrown, Shelley January 2008 (has links)
Lithium-ion batteries are a possible choice for the energy storage system onboard hybrid electric vehicles and low-earth-orbit satellites, but lifetime performance remains an issue. The challenge is to diagnose the effects of ageing and then investigate the dependence of the magnitude of the deterioration on different accelerating factors (e.g. state-of-charge (SOC), depth-of-discharge (DOD) and temperature). Lifetime studies were undertaken incorporating different accelerating factors for two different applications: (1) coin cells with a LixNi0.8Co0.15Al0.05O2-based positive electrode were studied with a EUCAR power-assist HEV cycle, and (2) laminated commercial cells with a LixMn2O4-based positive electrode were studied with a low-earth-orbit (LEO) satellite cycle. Cells were disassembled and the electrochemical performance of harvested electrodes measured with two- and three-electrode cells. The LixNi0.8Co0.15Al0.05O2-based electrode impedance results were interpreted with a physically-based three-electrode model incorporating justifiable effects of ageing. The performance degradation of the cells with nickelate chemistry was independent of the cycling condition or target SOC, but strongly dependent on the temperature. The positive electrode was identified as the main source of impedance increase, with surface films having a composition that was independent of the target SOC, but with more of the same species present at higher temperatures. Furthermore, impedance results were shown to be highly dependent on both the electrode SOC during the measurement and the pressure applied to the electrode surface. An ageing hypothesis incorporating a resistive layer on the current collector and a local contact resistance (dependent on SOC) between the carbon and active material, both possibly leading to particle isolation, was found to be adequate in fitting the harvested aged electrode impedance data. The performance degradation of the cells with manganese chemistry was accelerated by both higher temperatures and larger DODs. The impedance increase was small, manifested in a SOC-dependent increase of the high-frequency semicircle and a noticeable increase of the high-frequency real axis intercept. The positive electrode had a larger decrease in capacity and increase in the magnitude of the high-frequency semi-circle (particularly at high intercalated lithium-ion concentrations) in comparison with the negative electrode. This SOC-dependent change was associated with cells cycled for either extended periods of time or at higher temperatures with a large DOD. An observed change of the cycling behaviour in the second potential plateau for the LixMn2O4-based electrode provided a possible kinetic-based explanation for the change of the high-frequency semi-circle. / Litiumjonbatteriet är en möjlig kandidat för energilagring i hybridfordon och i satelliter i låg omloppsbana, men än så länge är livslängden på batterierna ett problem. Utmaningen ligger i att kunna förstå hur batteriet åldras genom att utforska hur åldringsprocessen accelereras av faktorer som laddningstillstånd, urladdningsdjup och temperatur. Livslängdsstudier för två olika typer av batterier tänkta för olika applikationer utfördes: (1) knappceller med positiva LixNi0,8Co0,15Al0,05O2-baserade elektroder studerades med en effektstödd (power-assist) hybridcykel från EUCAR, och (2) laminerade kommersiella celler med positiva LixMn2O4-baserade elektroder studerades med en satellitcykel, avsedd för en satellit med låg omloppsbana. Cellerna öppnades och de uttagna elektrodernas elektrokemiska egenskaper utvärderades i två- och tre-elektroduppställningar. Resultaten från elektrokemiska impedansmätningar för den positiva LixNi0,8Co0,15Al0,05O2-baserade elektroden tolkades med hjälp av en fysikalisk tre-elektrod modell som tog hänsyn till de i litteraturen främst föreslagna effekterna av åldring. Prestandadegraderingen av celler med nickelkemi var oberoende av cykel och laddningstillståndet där åldringen skedde, men starkt beroende av temperaturen. Den positiva elektroden visade sig vara den största orsaken till impedansökningen i batteriet. Ytfilmerna på den positiva elektroden hade en sammansättning som var oberoende av laddningstillståndet men beroende av temperaturen. Impedansresultaten från de uttagna elektroderna var starkt beroende av både laddningstillstånd och yttre tryck på elektrodytan. Det visade sig att det var tillräckligt att ta hänsyn till ett resistivt skikt på strömtilledaren och en lokal kontaktresistans mellan kolet och det aktiva materialet (som är beroende av laddningstillståndet) för att anpassa modellen till impedansdata mätt på de uttagna elektroderna. Prestandadegraderingen av celler med mangankemi påskyndades av både högre temperaturer och högre urladdningsdjup. Impedansen ökade något, då både högfrekvenshalvcirkeln och högfrekvensintercepten ändrades. Positiva elektroden hade en större degradering i kapaciteten och en större ökning i magnituden av högfrekvenshalvcirkeln (speciellt vid högre litiumjon koncentrationer i elektroden) jämfört med den negativa elektroden. Denna laddningstillståndsberoende impedans-ökning var kopplad till celler som hade cyklats under en längre tid eller vid en högre temperatur och med ett högt urladdningsdjup. Ökningen i magnituden av högfrekvenshalvcirkeln skulle kunna vara relaterad till kinetiska begränsningar eftersom cyklingsbeteendet vid andra spänningsplatån ändrades samtidigt för de LixMn2O4-baserade elektroderna. / QC 20100621
|
Page generated in 0.0226 seconds