• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimisation des procédés de concentration de la lizardite et de l'antigorite des résidus miniers de chrysotile

Kabombo, Dieudonné 25 July 2018 (has links)
La nouvelle loi canadienne sur l’amiante chrysotile décrétée par le gouvernement fédéral devrait entrer en vigueur au courant de l’année 2019 et les nouvelles normes environnementales qui en découleront nous forcent déjà à trouver des solutions pour réduire de façon significative l’impact environnemental et de revaloriser des résidus d’exploitation du chrysotile. Une des façons de réduire cet impact environnemental et revaloriser ce résidu consiste à concentrer la lizardite et l’antigorite comme matériaux générateurs de magnésium (Mg) et éliminer le chrysotile (cancérigène). Ces minéraux sont abondants dans les résidus miniers d’exploitation du chrysotile de l’ancienne mine Carey Canadian à East-Broughton dans le sud du Québec. La présente étude propose donc une revue des procédés de séparation physique des phases minérales serpentiniques et une étude détaillée sur la séparation gravimétrique par voie humide (hydrocyclonage/décantation) pour différentes classes granulométriques et une étape finale de séparation magnétique à sec pour l’extraction des minéraux magnétiques (magnétite) dans le concentré de la décantation. Les propriétés physiques, chimiques et minéralogiques du résidu initial ont été obtenues par tamisage grossier, par analyse de densité et surface spécifique, par fluorescence aux rayons X, par spectroscopie RAMAN, par MEB-EDS et par DRX. Les résultats les plus importants de cette étude sont qu’il est possible d’éliminer le chrysotile, sous forme de surverse, par hydrocyclonage en régime dilué (30% solides dans la pulpe) tout en concentrant la lizardite et l’antigorite (sousverse) avec des récupérations en Mg de l’ordre de 70 à 80 % en poids de Mg en sousverse. La séparation liquide-solide a été effectuée à 5 % de solides dans la pulpe et a permis d’augmenter la pureté du concentré d’hydrocyclonage (sousverse) avec des récupérations en Mg dans la sousverse variant entre 36 et 70 % partant des fines particules vers les grossières. La séparation magnétique a permis d’augmenter la pureté du concentré de décantation (sousverse) par l’extraction du fer. Ce qui a conduit à des récupérations croissantes en fer de 30 à 60 % à partir de particules grossières vers les fines. Les rapports Si/Mg et Fe/Si en fonction de la taille des particules pour les fractions non-magnétiques (concentrés) ont également été examinés dans une tentative d’estimation du fer résiduel présent par substitution intra-réseau Fe-Mg et Fe-Si dans les concentrés non-magnétiques. Mots clés: Hydrocyclone, Décantation, Séparation magnétique, Chrysotile, Lizardite, Antigorite. / Canada's new law on chrysotile asbestos is expected to come into force in 2019 by the federal government, and the resulting new environmental standards are already forcing us to find solutions to significantly reduce the environmental impact and revalorize chrysotile mining residues. One of the ways to reduce this environmental impact and enhance this residue is to concentrate lizardite and antigorite as magnesium (Mg) generating materials and eliminate chrysotile (carcinogenic). These minerals are abundant in the chrysotile mining tailings of the former Carey Canadian mine in East-Broughton in southern Quebec. The present study therefore proposes a review of the physical separation processes of serpentine mineral phases and a detailed study on wet gravimetric separation (hydrocycloning / decantation) for different granulometric classes and a final dry magnetic separation step for the extraction of minerals magnetic minerals (magnetite) in the concentrate of the decantation. The physical, chemical and mineralogical properties of the initial residue were obtained by coarse sieving, density and surface area analysis, X-ray fluorescence, RAMAN spectroscopy, SEM-EDS and XRD spectroscopy. The most important results of this study are that it is possible to eliminate chrysotile, in the form of overflow product, by dilute hydrocycloning (30% solids in the pulp) while concentrating lizardite and antigorite (underflow) with recoveries in Mg of the order of 70 to 80% by weight of Mg underflow. The liquid-solid separation was carried out at 5% solids in the pulp and made it possible to increase the purity of the hydrocyclone concentrate (underflow) with Mg recoveries in the underflow varying between 36 and 70% starting from the fine particles to the coarse ones. Magnetic separation made it possible to increase the purity of the settling concentrate (underflow) by extracting iron. This led to increasing recoveries of iron from 30 to 60% from coarse particles to fine ones. Si / Mg and Fe / Si ratios as a function of particle size for non-magnetic fractions (concentrates) were also examined in an attempt to estimate the residual iron present by intra-network substitution Fe-Mg and Fe- Si in non-magnetic concentrates. Keywords: Hydrocyclone, Decantation, Magnetic separation, Chrysotile, Lizardite, Antigorite.
2

Serpentinites, vecteurs des circulations fluides et des transferts chimiques de l'océanisation à la subduction : exemple dans les Alpes occidentales / Serpentinites, vectors of fluid circulation and chemical transfer from the mid-oceanic ridge to subduction : Example from the Western Alps

Debret, Baptiste 08 November 2013 (has links)
Les serpentinites sont un composant important de la lithosphère océanique formée niveau de rides lentes à ultra-lentes. Ces roches représentant un vaste réservoir de l'eau, d’éléments mobiles dans les fluides (FME), halogènes et volatils, il a été proposé qu'elles jouent un rôle important pendant l'échange chimique se produisant entre la lithosphère subduite et le coin mantellique dans des zones de subduction. L’objectif de mon doctorat a été de caractériser la nature et la composition des fluides transférés depuis la plaque plongeante jusqu’au coin mantellique en étudiant des ophiolites alpines métamorphiques. Celles-ci se composent en grande partie de serpentinites et ont enregistré différentes conditions métamorphiques modélisant un gradient de subduction. Les études pétrologiques des ophiolites alpines montrent que celles-ci ont enregistré différentes étapes de serpentinisation et de déserpentinisation : (1) serpentinisation océanique et la formation d’assemblages à lizardite et à chrysotile ; (2) déstabilisation prograde de la serpentine océanique en antigorite, à la transition des faciès schistes verts – schistes bleus ; (3)déshydratation de l'antigorite en olivine secondaire dans les conditions du facies d'éclogite. Les analyses chimiques des éléments en trace par LA-ICPMS et constituants volatils et halogènes par SIMS prouvent que, pendant la subduction, les processus de serpentinisation se sont réalisés sans contamination significative par des fluides externes provenant de la déshydratation des sédiments. Dans la partie la superficielle de la lithosphère océanique, la déformation augmente la mobilité des éléments en trace et permet leur redistribution et l'homogénéisation de la composition d'antigorite à l'échelle kilométrique. Au contraire, dans la partie la plus profonde de la lithosphère serpentinisée, la mobilité des éléments en trace est réduite et localisée dans des veines métamorphiques qui constituent des chenaux de circulation des fluides. Les cristallisations successives de l'antigorite et de l'olivine secondaire sont accompagnés d'une diminution des concentrations en FME (B, Li, As, Sb, Ba, Rb, Cs…), halogènes (F, Cl) et volatils (S). La quantification de Fe3+/FeTotal, par chimie humide et spectroscopie XANES, des serpentinites et serpentines montrent que, dans les premières phases de subduction, la transition de lizardite en antigorite est accompagnée d'une réduction forte du fer. Cette réduction est non linéaire avec le degré métamorphique, mais dépend également de la chimie initiale du protolithe péridotitique. À un degré métamorphique plus élevée, le début du processus de déserpentinisation se produit dans un environnement ferreux, menant à une nouvelle oxydation de l'antigorite résiduelle. En conclusion, les serpentinites sont un vecteur de transfert d'éléments depuis la ride jusqu’aux zones de subduction. Pendant la subduction et pendant les changements de phases de la serpentine, les teneurs en FME, en éléments volatils et halogènes de la serpentine diminuent, suggérant que ces éléments sont soustraits dans une phase fluide qui peut potentiellement contaminer le coin mantellique. La nature de ce fluide varie au cours de la subduction. Dans les premiers kilomètres de la subduction, lors de la transition lizardite vers antigorite, les fluides relâchés sont riches en FME, volatils et halogènes. Ils pourraient oxyder le coin mantellique (e.g. SOX, H2O ou CO2) où ils initieraient la cristallisation d’une serpentine riche en ces éléments. A l’inverse, à plus grande profondeur, la déshydratation de l’antigorite libère une quantité moindre de FME, volatils et halogènes. De plus, l’observation d’antigorite riche en Fe3+ associée à l’olivine de déserpentinisation pourrait suggérer la production d’hydrogène lors de la déshydratation de la plaque plongeante. / Serpentinites are an important component of the oceanic lithosphere formed at (ultra-) slow spreading ridges. Because these rocks are a large reservoir of water, fluid mobile elements (FME), halogens and volatiles, it has been proposed that they play a major role during chemical exchange occurring between the subducted lithosphere and the mantle wedge in subduction zones. The aim of my PhD was to characterize the nature and the composition of the fluids transferred from the slab to the mantle wedge by studying metamorphic alpine ophiolites. Those ones are mostly composed of serpentinites and have recorded different metamorphic conditions modeling a subduction gradient. The petrological studies of alpine ophiolites demonstrate that they record different serpentinization and deserpentinization steps: (1) from oceanic serpentinization and the formation of lizardite and chrysotile assemblages, (2) to the prograde destabilization of oceanic serpentine into antigorite, from greenshist to blueschist facies, and (3) finally the dehydration of antigorite into secondary olivine at eclogite facies. The chemical analyses of trace elements by LA-ICPMS and volatiles and halogens by SIMS show that during subduction, the serpentinization processes took place in a relatively closed system without significant external fluid contamination from sediments. In the shallowest part of the oceanic lithosphere, the deformation enhances the mobility of trace elements and permits their redistribution and the homogenization of antigorite composition at kilometric scale. While in the deepest part, the trace element mobility is reduced and localized in metamorphic veins that correspond to channel fluid flows. The successive crystallization of antigorite and secondary olivine are accompanied by a decrease of FME (B, Li, As, Sb, Ba, Cs…), halogens (F, Cl) and volatiles (S) concentrations. The quantification of Fe3+/FeTot by wet chemistry and XANES spectroscopy in serpentinites and serpentine show that, in the first stages of subduction, the transition lizardite to antigorite is accompanied by a strong reduction of the iron. This reduction is nonlinear with metamorphic grade, but also depends on the initial chemistry of the peridotitic protolith. At higher metamorphic grade, the beginning of the deserpentinization process occurs in a ferrous environment, leading to a new oxidation of the remaining antigorite. To conclude, serpentinites are a vector of element transfer from the ridge to subduction zones. During subduction and during the phase changes of serpentine, the FME, volatile and halogen concentrations of serpentine decrease, suggesting that they are removed in a fluid phase that can potentially contaminate the mantle wedge. The composition and the nature of this fluid phase vary during prograde metamorphism. In the first stages of subduction, during the transition lizardite to antigorite, the released fluids are FME, volatiles and halogens rich. They could oxidize the mantle wedge peridotite (e.g. SOX, H2O or CO2) where they allow the crystallization of a FME, volatils and halogens-rich serpentine. At greater depth, the formation of a Fe3+-rich antigorite associated with secondary olivine suggests a H2 production during slab dehydration.
3

Serpentinites, vecteurs des circulations fluides et des transferts chimiques de l'océanisation à la subduction : exemple dans les Alpes occidentales

Debret, Baptiste 08 November 2013 (has links) (PDF)
Les serpentinites sont un composant important de la lithosphère océanique formée niveau de rides lentes à ultra-lentes. Ces roches représentant un vaste réservoir de l'eau, d'éléments mobiles dans les fluides (FME), halogènes et volatils, il a été proposé qu'elles jouent un rôle important pendant l'échange chimique se produisant entre la lithosphère subduite et le coin mantellique dans des zones de subduction. L'objectif de mon doctorat a été de caractériser la nature et la composition des fluides transférés depuis la plaque plongeante jusqu'au coin mantellique en étudiant des ophiolites alpines métamorphiques. Celles-ci se composent en grande partie de serpentinites et ont enregistré différentes conditions métamorphiques modélisant un gradient de subduction. Les études pétrologiques des ophiolites alpines montrent que celles-ci ont enregistré différentes étapes de serpentinisation et de déserpentinisation : (1) serpentinisation océanique et la formation d'assemblages à lizardite et à chrysotile ; (2) déstabilisation prograde de la serpentine océanique en antigorite, à la transition des faciès schistes verts - schistes bleus ; (3)déshydratation de l'antigorite en olivine secondaire dans les conditions du facies d'éclogite. Les analyses chimiques des éléments en trace par LA-ICPMS et constituants volatils et halogènes par SIMS prouvent que, pendant la subduction, les processus de serpentinisation se sont réalisés sans contamination significative par des fluides externes provenant de la déshydratation des sédiments. Dans la partie la superficielle de la lithosphère océanique, la déformation augmente la mobilité des éléments en trace et permet leur redistribution et l'homogénéisation de la composition d'antigorite à l'échelle kilométrique. Au contraire, dans la partie la plus profonde de la lithosphère serpentinisée, la mobilité des éléments en trace est réduite et localisée dans des veines métamorphiques qui constituent des chenaux de circulation des fluides. Les cristallisations successives de l'antigorite et de l'olivine secondaire sont accompagnés d'une diminution des concentrations en FME (B, Li, As, Sb, Ba, Rb, Cs...), halogènes (F, Cl) et volatils (S). La quantification de Fe3+/FeTotal, par chimie humide et spectroscopie XANES, des serpentinites et serpentines montrent que, dans les premières phases de subduction, la transition de lizardite en antigorite est accompagnée d'une réduction forte du fer. Cette réduction est non linéaire avec le degré métamorphique, mais dépend également de la chimie initiale du protolithe péridotitique. À un degré métamorphique plus élevée, le début du processus de déserpentinisation se produit dans un environnement ferreux, menant à une nouvelle oxydation de l'antigorite résiduelle. En conclusion, les serpentinites sont un vecteur de transfert d'éléments depuis la ride jusqu'aux zones de subduction. Pendant la subduction et pendant les changements de phases de la serpentine, les teneurs en FME, en éléments volatils et halogènes de la serpentine diminuent, suggérant que ces éléments sont soustraits dans une phase fluide qui peut potentiellement contaminer le coin mantellique. La nature de ce fluide varie au cours de la subduction. Dans les premiers kilomètres de la subduction, lors de la transition lizardite vers antigorite, les fluides relâchés sont riches en FME, volatils et halogènes. Ils pourraient oxyder le coin mantellique (e.g. SOX, H2O ou CO2) où ils initieraient la cristallisation d'une serpentine riche en ces éléments. A l'inverse, à plus grande profondeur, la déshydratation de l'antigorite libère une quantité moindre de FME, volatils et halogènes. De plus, l'observation d'antigorite riche en Fe3+ associée à l'olivine de déserpentinisation pourrait suggérer la production d'hydrogène lors de la déshydratation de la plaque plongeante.

Page generated in 0.0316 seconds