• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 12
  • Tagged with
  • 24
  • 24
  • 24
  • 24
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Matériaux hydrophiles pour l'adsorption préférentielle de l'eau à hautes températures

Ghodhbene, Marwa 25 May 2018 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2017-2018 / Le dioxyde de carbone (CO2) est l'un des plus importants gaz à effet de serre émis par les activités anthropiques. Les émissions de CO2 peuvent être diminuées en le valorisant en plusieurs produits chimiques tels que le méthanol, l'éthanol, le diméthyléther et des hydrocarbures par conversion catalytique du CO2. Cependant, la conversion et le rendement en produit sont faibles en raison de la grande quantité d'eau produite (en tant que sousproduit) qui a un effet négatif sur le catalyseur et limite thermodynamiquement le système réactionnel. L'élimination de l'eau du milieu réactionnel, un exemple d’intensification des procédés par élimination d’un produit à l’aide d’adsorbants, est appelée « sorption enhanced reaction process » (SERP). Peu d'études concernant l'adsorption de l'eau à hautes températures sont disponibles dans la littérature. Ce projet consiste en l'étude de l'efficacité de plusieurs matériaux zéolithiques potentiels (LTA, FAU et SOD) pour l’adsorption de l'eau jusqu’à 250 °C qui est la température moyenne de réaction de tous les produits mentionnés ci-dessus. Les expériences ont été réalisées en utilisant un analyseur gravimétrique intelligent (IGA, Hiden Isochema). L'effet de différents paramètres tels que la température, la granulométrie et la pression partielle de l'eau a été étudié. Pour les zéolithes étudiées, la capacité d’absorption a montré une diminution à des températures élevées, en restant néanmoins significative à 250 °C. Les résultats démontrent que les zéolithes FAU-13X et LTA-4A ont la plus grande capacité d'adsorption. Les zéolithes en poudre ont une capacité d’adsorption plus élevée que celles sous forme de perles. La faible cinétique d'adsorption de la SOD limite son utilisation. Les données expérimentales ont été corrélées par des modèles mathématiques. Une équation de type « double exponentielle étirée » a été utilisée et les constantes cinétiques ont été déterminées pour chaque zéolithe. Ces résultats permettront la modélisation et l’optimisation des procédés SERP. / Carbon dioxide (CO2) is one of the most important greenhouse gases released from anthropic activities. The emissions of CO2 can be reduced by its valorisation into many chemical products like methanol, ethanol, dimethylether and hydrocarbons by catalytic conversion of CO2. However, CO2 conversion and product yield are low because of the large amount of water produced (as by-product) that has a negative effect on the catalyst and thermodynamically limits the system. The removal of water using adsorbents, an example of process intensification by the removal of a product, is called sorption enhanced reaction process (SERP). Few studies concerning adsorption of water at high temperatures were found in the literature. In this work, a comparative study was conducted with various potential water adsorbents. The efficiency of several potential zeolitic materials (LTA, FAU and SOD) was investigated for water adsorption up to 250 °C which is the reaction temperature of all products mentioned above. The experiments were performed using an Intelligent Gravimetric Analyser (IGA, Hiden Isochema). The effect of different parameters like temperature, particle size and partial pressure of water were studied. For all zeolites, the water uptake showed an important decrease at higher temperatures but the capacity at 250 °C was still significant. Zeolites FAU-13X and LTA-4A have the higher adsorption capacities. Zeolites in powder form have a higher adsorption capacity than pearls. Meanwhile, the poor adsorption kinetics of SOD limits its use. The experimental data were correlated by mathematical models. A double stretched exponential equation was found to correlate all data and the kinetic constants were determined for each zeolite. These results will allow the modelling and the optimization of SERP process.
2

Glycerol acetalization using water-tolerant catalyst

Chen, Lin 31 August 2018 (has links)
L'application commerciale du glycérol a attiré l'attention de la communauté scientifique ces dernières années. Le glycérol formal, qui est produit par l'acétalisation du glycérol, est bénéfique en tant qu'additif pour carburant, en particulier pour les propriétés d’écoulement du biodiesel à basse température. Cependant, le processus réversible d'acétalisation est ralenti par la formation d'eau qui cause aussi une désactivation des catalyseurs acides. Dans ce travail une étude comparative de differents catalyseurs résistants à l’eau et incluant, Cs2.5H0.5PW12O40, AS-MES (acide arène sulfonique éthane-silice), zéolithe ZSM-5, H3PW12O40 en tant que modèle homogène et le catalyseur commercial Amberlyst -15 a été effectuée. De plus, une étude cinétique préliminaire a été réalisée dans un réacteur discontinu agité, étudiant l'influence de différents paramètres, tels que la température, la composition de l'alimentation et la charge de catalyseur. Un des isomères du glycérol formal, le 1,3 dioxan-5ol pourrait être transformé en 1,3-propanediol. Par conséquent, la distribution des deux isomères d'acétal de glycérol a été étudiée systématiquement. Pour améliorer d’avantage l'activité du Cs2.5H0.5PW12O40 non-supporté dans l'acétalisation du glycérol, il a été déposé sur de la silice mésoporeuse par une méthode d'imprégnation pour augmenter la surface de contact des réactifs et des sites acides. En outre, le Cs2.5H0.5PW12O40 supporté sur des silice mésoporeuse 2D (SBA-15) et 3D (KIT-6 et SBA-16) ont été comparées puisque le réseau poreux topologiques de le silice mésoporeuse avec une structure 3D facilite l'accès aux sites acides, tandis que les canaux longs 2D de SBA-15 peuvent entraîner des limitations au transport aux points de connexion des particules élémentaires. L'impact du volume de mésopores a également été étudié. Trouver une source d'aldéhyde appropriée est également crucial pour améliorer l'activité du catalyseur employé. Comme la solution de formaldéhyde contient de grandes quantités d'eau qui désactiveraient le catalyseur et favoriserait la réaction inverse, le paraformaldéhyde (une source solide de formaldéhyde sans eau) et l'acétone ont été étudiés afin de remplacer la solution de formaldéhyde. / The commercial application of glycerol has attracted attention of the scientific community in recent years. Glycerol formal, which is produced from glycerol acetalization, is beneficial as fuel additive especially for the low temperature properties of biodiesel. However, the acetalization process is hampered by formation of water which will reverse the reaction and deactivate the acid catalysts. Using water-resistant heterogeneous acid catalyst will be favorable for acetalization of glycerol. In this research work, a comparative study has been carried out using the water-tolerant Cs2.5H0.5PW12O40, AS-MES (arene sulfonic acid ethane-silica), zeolite ZSM-5, H3PW12O40 as a homogeneous model and the commercial catalyst Amberlyst-15. In addition, a preliminary kinetic study was performed in a batch stirred tank reactor, studying the influence of different process parameters including temperature, feed composition and catalyst loading. One of glycerol formal isomers, 1,3 dioxan-5ol may be postsynthetically modified into important chemical products such as 1,3-propanediol. Therefore, the distribution of the two glycerol acetal isomers has also been studied systematically. To further enhance the activity of bulk Cs2.5H0.5PW12O40 for glycerol acetalization, it was supported on mesoporous silica by incipient impregnation method to increase the contact area of reactants and acid sites. Besides, supported Cs2.5H0.5PW12O40 supported on 2D (SBA-15) and 3D (KIT-6 and SBA-16) pore lattice mesoporous silicas have been compared since the topological curvatures of mesoporous silica with 3D structure would reasonably provide good transportation channels to get facilitated access to acid sites, while 2D long channels of SBA-15 may yield transport limitations at the points of connections of elemental particles. The impact of mesopore volume on activity has also been studied. Finding an appropriate aldehyde source is also crucial to improve the activity of the catalyst used. Since formaldehyde solution contains large amount of water which would deactivate the catalyst and favor the reversibility of the reaction, paraformaldehyde (a solid water-free source of formaldehyde) and acetone were studied to replace formaldehyde solution.
3

Époxydation du limonène

Charbonneau, Luc 24 January 2019 (has links)
Le limonène a été souligné comme molécule clé pour le développement de polymères biosourcés comme alternative aux monomères classiques provenant de sources pétrolières, mais la polymérisation directe de celui-ci conduit à des plastiques de basse qualité. Cependant, ses produits d’époxydation tels que le 1,2-oxyde de limonène et le dioxyde de limonène sont essentiels pour la production de polycarbonates verts et de polyuréthanes sans l’utilisation d’isocyanate et par conséquent la production de ces deux molécules devient un enjeu majeur. Tout d’abord, l’époxydation du limonène a été effectuée en présence d’un catalyseur au titane de basse coordination supporté sur une silice mésoporeuse de type SBA-16 en présence de TBHP dans le décane comme agent oxydant. La conversion en limonène a été de 80% avec une sélectivité en 1,2-oxyde de limonène de 79% ainsi que de 21% en 8,9-oxyde de limonène après 24 h de temps de réaction. Les conditions réactionnelles ont été optimisées et la réaction doit être effectuée en présence de 300 mg du catalyseur à 75oC dans l’acétonitrile comme solvant avec un rapport molaire TBHP/limonène de 11/6,2. Toutefois, l’utilisation d’un catalyseur au titane supporté sur une silice mésoporeuse s'est avérée inefficace pour la double époxydation du limonène en dioxyde de limonène. Différentes alternatives ont été considérées afin de produire cette molécule. Une approche relativement verte consiste à effectuer la double époxyadtion dans des conditions semi-continues en employant le DMDO généré in situ par la réaction de l’acétone avec une solution aqueuse d’Oxone® à température ambiante. Deux méthodes ont été étudiées et comparées. Tout d’abord la réaction a été effectuée dans un système biphasique conventionnel eau-solvant organique à température ambiante. L’acétate d’éthyle a été employé comme phase organique dans cette étude. La conversion obtenue dans ces conditions a été de 95% avec un rendement de 33% pour le dioxyde de limonène. Lorsque cette même réaction a été effectuée en excès d’acétone, la conversion obtenue a été de 100% et un rendement de 97% en dioxyde de limonène en seulement 1,5h. Les conditions de la réaction ont été optimisées. La réaction doit être effectuée avec un débit de solution aqueuse d’Oxone® de 4 mL min-1 et un excès stoechiométrique de 33% avec un temps de réaction de 45 min à température ambiante. Le caractère multiphasique de la réaction d’époxydation du limonène entraîne des limitations du transfert de matière du DMDO de la phase aqueuse à la phase acétone. Pour pallier ce problème, les ultrasons ont été employés afin d’accélérer ce processus de transfert de matière et réduire le temps de la réaction. La double époxydation du limonène en présence d’ultrasons avec une puissance nominale de 50W a permis d’obtenir un rendement de 100% en dioxyde de limonène avec un temps de réaction de seulement 4,5 min à température ambiante. À partir de ces résultats, d’autres terpènes ont aussi été époxydés afin de généraliser la technique. Les deux isomères du pinène ont été convertis à 100% en leur époxyde respectif en seulement 4 min. Le farnésol, un tri-alcène, a lui été converti à 100% en tri-époxyde de farnésol en 8 min. Le carvéol, un dérivé du limonène a été converti à 100% après 5 min de temps de réaction. Le rendement en diépoxyde était supérieur à 95%. Les sous-produits de la réaction consistaient aux deux monoépoxydes du carvéol et la présence de carvone a aussi été détectée. Le carvone, un autre dérivé du limonène a lui aussi été converti à 100% après 5 min de temps de réaction, seulement le 7,8-époxyde carvone, un monoépoxyde, a été produit / Limonene has been highlighted as a key molecule for the development of bio-based polymers as an alternative to conventional monomers from petroleum sources, but the direct polymerization of this leads to low quality plastics. However, its epoxidation products such as 1,2-limonene oxide and limonene dioxide are essential to produce green polycarbonates and polyurethanes without the use of isocyanate, therefore the production of these two molecules becomes a major issue. First, the epoxidation of limonene was carried out using low coordination titanium catalyst supported on a SBA-16 mesoporous silica in the presence of TBHP in the decane as oxidizing agent. The conversion to limonene was 80% with a selectivity of 79% 1,2-oxide of limonene and 21% of 8,9-limonene oxide after 24 hours of reaction time. The reaction conditions were optimized, and the reaction should be carried out in the presence of 300 mg of the catalyst at 75 ° C in acetonitrile as solvent with a molar ratio TBHP / limonene of 11 / 6.2. However, the use of a titanium catalyst supported on a mesoporous silica has proved ineffective for the double epoxidation of limonene to limonene dioxide. Different alternatives have been considered in order to produce this molecule. A relatively green approach is to perform the double epoxydation under semi-continuous conditions using DMDO generated in situ by the reaction of acetone with an aqueous solution of Oxone® at room temperature. Two methods have been studied and compared. First, the reaction was carried out in a conventional biphasic water-organic solvent system phase at room temperature. Ethyl acetate was used as the organic phase. The conversion obtained under these conditions was 95% with a yield of 33% for limonene dioxide. When the same reaction was carried out in excess of acetone, the obtained conversion of limonene was 100% leading to 97% of limonene dioxide in only 1.5 hours. The conditions of the reaction have been optimized. The reaction must be carried out with a flow rate of Oxone® aqueous solution of 4 mL min-1 and a stoichiometric excess of 33% with a reaction time of 45 min at room temperature. On the other hand, the multiphasic nature of this reaction causes limitations in the mass transfer of DMDO from the aqueous phase to the acetone phase. Ultrasound has been used to accelerate the mass transfer. process of DMDO and thereby reduce the reaction time. The double epoxidation of limonene in the presence of ultrasound with a nominal power of 50W achieved a yield of 100% of limonene dioxide with a reaction time of only 4.5 min at room temperature. From these results, other terpenes have also been epoxidized to generalize the technique. Both isomers of pinene were converted to 100% in their respective epoxide in just 4 min. Farnesol, a tri-alkene, has been converted to 100% farnesol tri-epoxide in 8 min. Carveol, a derivative of limonene was converted to 100% after 5 min of reaction time. The diepoxide yield was higher than 95%. The by-products of the reaction consisted of both carveol monoepoxide and the presence of carvone was also detected. Carvone, another derivative of limonene, was also converted to 100% after 5 min of reaction time. Only 7,8-epoxide carvone, a monoepoxide, was produced.
4

Composite membranes for gas separation

Shahidi, Kazem 22 November 2018 (has links)
Dans ce travail, une méthode efficace est présentée pour la production de membranes composites planes à haute performance pour la séparation de gaz en utilisant une quantité limitée de solvant. En particulier, une série de polydiméthylsiloxane/polyéthylène de basse densité (PDMS/LDPE) a été produite en apposant une couche de PDMS active sur un support de LDPE microporeux produit par extrusion continue et lixiviation de sel et immersion dans l'eau chaude. La méthode proposée est simple et de faible coût car elle est basée sur des matériaux peu dispendieux (LDPE et PDMS) et utilise peu de solvant écologique (eau). En vue d'améliorer la performance et les propriétés des membranes composites, des particules de silice fumée traitée avec le triméthylsiloxy (TFS) ont été incorporées dans la couche de PDMS pour produire des membranes nano-composites PDMS-TFS/LDPE. Les membranes ont ensuite été caractérisées en termes de morphologie, de porosité et de distribution de tailles de pores, ainsi que les propriétés thermiques, mécaniques, de sorption et de perméation. Comme les caractéristiques de la membrane dépendent des conditions de mise en oeuvre, la production des membranes composites a été optimisée en fonction de différents revêtements, de la concentration en nanoparticules et de la concentration de la couche de revêtement. Les performances membranaires (perméabilité et sélectivité) ont été étudiées pour différentes conditions opératoires (température et pression) et les résultats ont montré que la membrane nano-composite PDMS-TFS10%/LDPE est appropriée pour différentes applications industrielles dans la séparation d'hydrocarbures supérieurs. / In this work, an efficient method with a limited amount of solvent use is presented to produce high-performance flat sheet composite membranes for gas separation. In particular, a series of polydimethylsiloxane/low-density polyethylene (PDMS/LDPE) membranes were produced by coating an active PDMS layer on a microporous LDPE support via continuous extrusion and salt leaching using immersion in hot water. The proposed method is simple and cost-effective since it is based on inexpensive materials (LDPE and PDMS) and uses a low amount of an environmentally friendly solvent (water). To improve the composite membranes performance and properties, trimethylsiloxy grafted fumed silica (TFS) particles were incorporated into the PDMS layer to produce PDMS-TFS/LDPE nano-composite membranes. The membranes were then characterized in terms of morphology, porosity and pore size distribution, as well as thermal, mechanical, sorption and permeation properties. Since the membrane properties depend on the processing conditions, the composite membranes production was optimized for a different number of coatings, nano-particles loading and coating concentration. Membrane performance (permeability and selectivity) was studied under different operating conditions (temperature and pressure), and the results showed that the PDMSTFS10%/ LDPE nano-composite membrane is highly suitable for different industrial applications of higher hydrocarbon separations.
5

Contrôle de l'interaction polymère/particules dans les membranes à matrice mixte / Contrôle de l'interaction polymère/particules dans les membranes à matrice mixte

Nguyen, Tien Binh, Nguyen, Tien Binh January 2018 (has links)
Au cours des dernières décennies, la technologie membranaire a montré de grandes performances dans les séparations en phase liquide telles que la production d’eau potable à partir d’eau de mer. Beaucoup d’efforts ont été faits pour étendre son application aux séparations de gaz. La séparation des composants de l’air, des gaz industriels de raffineries, la séparation et la récupération du CO2 du biogaz et du gaz naturel sont des exemples dans lesquels la technologie membranaire est appliquée au niveau industriel. La séparation par membranes a été substituée ou interfacée avec les méthodes conventionnelles telles que la distillation cryogénique pour produire de l’air enrichi en oxygène (fraction molaire >- 30%) qui est injecté dans les brûleurs industriels pour obtenir une température plus élevée, avec moins de consommation de gaz. Il est également possible d’utiliser la technologie membranaire pour capturer et recycler le CO2 émis par les gaz de combustion des centrales électriques et les aciéries pour résoudre le problème des gaz à effet de serre. Les membranes pour la séparation des gaz peuvent être classées en deux catégories principales, basées sur le matériau, polymère et inorganique, dans lesquelles les membranes polymériques sont plus populaires. Par rapport aux matériaux inorganiques, les membranes polymères présentent une meilleure facilité de traitement, une résistance mécanique et une densité de remplissage plus élevée, ce qui les rend appropriées pour des applications à grande échelle. Elles ne peuvent cependant pas supporter des températures élevées ou des agents chimiques agressifs. Leurs propriétés de séparation (perméabilité et sélectivité) peuvent être sévèrement compromises par les hydrocarbures condensables (C2+) lorsqu’elles sont appliquées dans les usines pétrochimiques, les raffineries et le traitement du gaz naturel. Pour améliorer les performances des membranes polymères, le nouveau concept, de membrane à matrice mixte (MMM), a été réalisé en dispersant des particules nanométriques ou microscopiques de matériaux inorganiques dans une matrice polymère. Dans ce travail, nous avons préparé de nouvelles MMMs en utilisant des polymères et des matériaux organo-métalliques (MOF) en tant que phases continue et dispersée, respectivement. Nous avons développé plusieurs techniques pour surmonter la faible adhérence interfaciale entre les deux phases qui diminue typiquement l’efficacité de séparation des MMM. Pour ce faire, dans la première partie de cette thèse (Chapitre 3), nous avons synthétisé des particules de MOF comportant des fonctions -NH2 et une série de polymères décorés de -OH pour la préparation de MMMs. La liaison physique entre les deux groupes fonctionnels s’est avérée améliorer nettement l’adhérence polymère/charge des MMMs obtenues ainsi que leur performance de séparation des gaz. Dans la partie suivante (Chapitre 4), nous avons introduit une modification post-synthétique pour former une liaison chimique entre le polymère et la charge dans les MMMs. Dans des conditions optimisées, un MOF fonctionnalisé portant des groupes réticulables a été amené à réagir avec un polymère déjà synthétisé contenant des extrémités de chaînes réactives pour produire, pour la première fois, des MMMs réticulées. Dans la dernière partie (Chapitre 5), nous avons décrit une nouvelle technique pour obtenir in-situ la liaison chimique polymère-charge pendant la synthèse du polymère. Dans cette technique, les particules de MOF ont été directement introduites dans le milieu de polymérisation. L’importance des liens polymère-charge a été étudiée en fonction du temps de polymérisation. Cette étude a montré une forte relation entre la qualité de l’interaction polymère-charge et les propriétés de séparation des gaz des MMMs. / Au cours des dernières décennies, la technologie membranaire a montré de grandes performances dans les séparations en phase liquide telles que la production d’eau potable à partir d’eau de mer. Beaucoup d’efforts ont été faits pour étendre son application aux séparations de gaz. La séparation des composants de l’air, des gaz industriels de raffineries, la séparation et la récupération du CO2 du biogaz et du gaz naturel sont des exemples dans lesquels la technologie membranaire est appliquée au niveau industriel. La séparation par membranes a été substituée ou interfacée avec les méthodes conventionnelles telles que la distillation cryogénique pour produire de l’air enrichi en oxygène (fraction molaire >- 30%) qui est injecté dans les brûleurs industriels pour obtenir une température plus élevée, avec moins de consommation de gaz. Il est également possible d’utiliser la technologie membranaire pour capturer et recycler le CO2 émis par les gaz de combustion des centrales électriques et les aciéries pour résoudre le problème des gaz à effet de serre. Les membranes pour la séparation des gaz peuvent être classées en deux catégories principales, basées sur le matériau, polymère et inorganique, dans lesquelles les membranes polymériques sont plus populaires. Par rapport aux matériaux inorganiques, les membranes polymères présentent une meilleure facilité de traitement, une résistance mécanique et une densité de remplissage plus élevée, ce qui les rend appropriées pour des applications à grande échelle. Elles ne peuvent cependant pas supporter des températures élevées ou des agents chimiques agressifs. Leurs propriétés de séparation (perméabilité et sélectivité) peuvent être sévèrement compromises par les hydrocarbures condensables (C2+) lorsqu’elles sont appliquées dans les usines pétrochimiques, les raffineries et le traitement du gaz naturel. Pour améliorer les performances des membranes polymères, le nouveau concept, de membrane à matrice mixte (MMM), a été réalisé en dispersant des particules nanométriques ou microscopiques de matériaux inorganiques dans une matrice polymère. Dans ce travail, nous avons préparé de nouvelles MMMs en utilisant des polymères et des matériaux organo-métalliques (MOF) en tant que phases continue et dispersée, respectivement. Nous avons développé plusieurs techniques pour surmonter la faible adhérence interfaciale entre les deux phases qui diminue typiquement l’efficacité de séparation des MMM. Pour ce faire, dans la première partie de cette thèse (Chapitre 3), nous avons synthétisé des particules de MOF comportant des fonctions -NH2 et une série de polymères décorés de -OH pour la préparation de MMMs. La liaison physique entre les deux groupes fonctionnels s’est avérée améliorer nettement l’adhérence polymère/charge des MMMs obtenues ainsi que leur performance de séparation des gaz. Dans la partie suivante (Chapitre 4), nous avons introduit une modification post-synthétique pour former une liaison chimique entre le polymère et la charge dans les MMMs. Dans des conditions optimisées, un MOF fonctionnalisé portant des groupes réticulables a été amené à réagir avec un polymère déjà synthétisé contenant des extrémités de chaînes réactives pour produire, pour la première fois, des MMMs réticulées. Dans la dernière partie (Chapitre 5), nous avons décrit une nouvelle technique pour obtenir in-situ la liaison chimique polymère-charge pendant la synthèse du polymère. Dans cette technique, les particules de MOF ont été directement introduites dans le milieu de polymérisation. L’importance des liens polymère-charge a été étudiée en fonction du temps de polymérisation. Cette étude a montré une forte relation entre la qualité de l’interaction polymère-charge et les propriétés de séparation des gaz des MMMs. / In recent decades, membrane technology has shown its great performance in liquid phase separations such as production of drinking water from seawater. It has now attracted much scientific attention to expand its application to gas separations. Separation of air components, H2 from refinery industrial gases, separation and recovery of CO2 from biogas and natural gas are some examples in which the membrane technology is potentially applied at industrial level. The membrane based separation was either partially substituted or integrated with conventional methods like cryogenic distillation to product oxygen-enriched air (mole fraction 30% ) that is injected into industrial burners to obtain higher temperature with less gas consumption. It is also possible to use membrane technology to capture and recycle CO2 emitted from flue gas streams of power plants and steel mills in solving the greenhouse effect. The membranes for gas separation can be classified in two main categories, based on material, polymeric and inorganic, in which polymeric membranes are more popular. Compared to the inorganic, the polymer membranes show better processability, mechanical strength and higher packing density, hence, being suitable for large-scale applications. They cannot, however, withstand high temperatures or aggressive chemical agents. Their separation properties (permeability and selectivity) may be severely affected by condensable hydrocarbons (C2+) when they are applied in petrochemical plants, refineries and natural gas treatment. To enhance the performance of polymer membranes, a new concept, mixed matrix membrane (MMM), has been proposed by dispersing nano- or micro-sized particles of inorganic materials into a polymer matrix. In this work, we have prepared novel MMMs using polymers and metal organic framework (MOF) as the continuous and dispersed phases, respectively. We have developed several techniques to overcome the weak interfacial adhesion between the two phases that typically decreases the separation efficiency of MMMs. To do so, in the first part of this thesis (Chapter 3), we have synthesized a -NH2 included MOF particle and a series of -OH decorated polymers for MMM preparation. The physical bonding between the two functional groups was found to clearly improve the polymer/filler adhesion of the obtained MMMs as well as their gas separation performance. Then, in the following part (Chapter 4), we have introduced a post-synthetic modification to form chemical bonding between the polymer and filler within MMMs. Under optimized conditions, a functionalized MOF bearing crosslinkable groups was reacted with an as-synthesized polymer containing reactive chain-ends to produce, for the first time, crosslinked MMMs. In the final part (Chapter 5), we have described a novel technique to obtain in-situ the polymer-filler chemical bonding during the polymer synthesis. In this technique, the MOF particles were directly introduced into the polymerization medium. The extent of the polymer-filler link was studied as a function of polymerization time. This study has shown a strong relationship between the quality of polymer-filler interaction and the gas separation properties of the MMMs. / In recent decades, membrane technology has shown its great performance in liquid phase separations such as production of drinking water from seawater. It has now attracted much scientific attention to expand its application to gas separations. Separation of air components, H2 from refinery industrial gases, separation and recovery of CO2 from biogas and natural gas are some examples in which the membrane technology is potentially applied at industrial level. The membrane based separation was either partially substituted or integrated with conventional methods like cryogenic distillation to product oxygen-enriched air (mole fraction 30% ) that is injected into industrial burners to obtain higher temperature with less gas consumption. It is also possible to use membrane technology to capture and recycle CO2 emitted from flue gas streams of power plants and steel mills in solving the greenhouse effect. The membranes for gas separation can be classified in two main categories, based on material, polymeric and inorganic, in which polymeric membranes are more popular. Compared to the inorganic, the polymer membranes show better processability, mechanical strength and higher packing density, hence, being suitable for large-scale applications. They cannot, however, withstand high temperatures or aggressive chemical agents. Their separation properties (permeability and selectivity) may be severely affected by condensable hydrocarbons (C2+) when they are applied in petrochemical plants, refineries and natural gas treatment. To enhance the performance of polymer membranes, a new concept, mixed matrix membrane (MMM), has been proposed by dispersing nano- or micro-sized particles of inorganic materials into a polymer matrix. In this work, we have prepared novel MMMs using polymers and metal organic framework (MOF) as the continuous and dispersed phases, respectively. We have developed several techniques to overcome the weak interfacial adhesion between the two phases that typically decreases the separation efficiency of MMMs. To do so, in the first part of this thesis (Chapter 3), we have synthesized a -NH2 included MOF particle and a series of -OH decorated polymers for MMM preparation. The physical bonding between the two functional groups was found to clearly improve the polymer/filler adhesion of the obtained MMMs as well as their gas separation performance. Then, in the following part (Chapter 4), we have introduced a post-synthetic modification to form chemical bonding between the polymer and filler within MMMs. Under optimized conditions, a functionalized MOF bearing crosslinkable groups was reacted with an as-synthesized polymer containing reactive chain-ends to produce, for the first time, crosslinked MMMs. In the final part (Chapter 5), we have described a novel technique to obtain in-situ the polymer-filler chemical bonding during the polymer synthesis. In this technique, the MOF particles were directly introduced into the polymerization medium. The extent of the polymer-filler link was studied as a function of polymerization time. This study has shown a strong relationship between the quality of polymer-filler interaction and the gas separation properties of the MMMs.
6

Développement d'une méthode d'évaluation de la viabilité et de la stabilité de Bifidobacterium longum par analyse d'images

Bélanger, Pierre-Luc 29 October 2019 (has links)
Assurer la stabilité des produits probiotiques est un défi technologique important pour l’industrie. En effet, des déviations dans le procédé de production de ces probiotiques peuvent conduire à un déclin dans la population viable qui n’est détectable que plusieurs mois après la fabrication du produit. Conséquemment, une méthode d’analyse a été développée et évaluée en collaboration avec Pfizer pour prédire la stabilité d’un échantillon de Bifidobacterium longum sous forme lyophilisée. B. longum est ainsi cultivé sur géloses pendant 4 jours, suivi de l’acquisition d’images des plaques. Des données morphologiques sur les colonies sont extraites par analyse d’images et sont utilisées dans un modèle multivarié PLS. D’abord, les paramètres de la méthode ont été testés et ajustés afin de mieux cerner les capacités de la méthodologie employée. Ainsi, l’épaisseur de la gélose influence les propriétés des couleurs des colonies et accroit la variabilité de la taille des colonies lorsqu’elle est en-dessous de 3,1 mm. D’autre part, la concentration du composé XA n’a pas d’influence sur la formation des colonies. Le délai de réhydratation avant incubation n’a pas non plus d’effet détectable sous la barre des 2 heures. Enfin, la durée d’incubation préférable a été sélectionnée à 4 jours, avec un nombre de colonies visé d’environ 75 par gélose. Les essais d’évaluation de la méthode ont révélé sa capacité à distinguer des échantillons issus d’une colonie fraîche d’échantillons lyophilisés. Cependant, les échantillons lyophilisés ayant subi un conditionnement supplémentaire (thermique, oxydatif) n’ont pas pu être distingués d’échantillons lyophilisés non-conditionnés. Ces défis ont été attribués à un effet masquant de la lyophilisation. En conséquence, il est proposé d’étudier l’effet de la lyophilisation en relation avec la méthodologie afin de poursuivre le développement de la méthode.
7

Novel strategies to develop efficient titanium dioxide and graphitic carbon nitride-based photocatalysts

Nguyen, Chinh Chien 17 July 2018 (has links)
Afin de résoudre les problèmes environnementaux et énergétiques modernes, ces dernières années ont vu le développement de catalyseurs photocataytiques capables d’utiliser la lumière solaire. En effet, les possibles applications des semiconducteurs présentant des propriétés photocatalytiques dans les domaines de la production d’hydrogène ou la dégradation de polluants organiques ont généré un grand intérêt de la part de la communauté scientifique. Actuellement, les photocatalyseurs à base de dioxyde de titane (TiO₂) et de nitrure de carbone graphitique (g-C₃N₄) sont considérés comme les matériaux les plus étudiés pour leurs faibles coûts et leurs propriétés physico-chimiques exceptionnelles. Cependant, la performance photocatalytique de ces matériaux reste encore limitée, à cause de la recombinaison rapide des porteurs de charge et et d'une absorption limitée de la lumière. En générale, malgré des caractéristiques exceptionnelles, ces matériaux ne contribuent pas significativement à la séparation de charge et l’absorption de la lumière lorsqu’ils sont produits par des méthodes conventionnelles. L'objectif de cette thèse est de développer de nouvelles voies pour la production de matériaux efficaces basés sur TiO₂ et g-C₃N₄). Nous avons d'abord préparé de la triazine (CxNy) qui fonctionne comme un co-catalyseur d'oxydation ce qui facilite la séparation des paires «électron-trou» dans le système du photocatalyseur creux de type Pt-TiO₂-CxNy. La présence simultanée de Pt et de CxNy, qui servent comme co-catalyseurs de réduction et d'oxydation, respectivement, a permis une amélioration remarquable des performances photocatalytiques du TiO₂. De plus, nous avons développé une nouvelle approche, en utilisant un procédé de combustion de sphère de carbone assisté par l’air, pour préparer du C/Pt/TiO₂ . Ce matériau possède de nombreuses propriétés uniques qui contribuent de manière significative à augmenter la séparation « électron-trou », et en conséquence, à améliorer la performance photocatalytique. Dans le but de développer un matériau qui soit capable de fonctionner sous les rayons du soleil et dans l'obscurité, nous avons développé un photocatalyseur creux à double enveloppes : le Pt-WO₃/TiO₂-Au. Ce matériau a montré non seulement une forte absorption de la lumière solaire, mais aussi une séparation des charges élevée et une haute capacité de stockage d'électrons. Par conséquent, ce type de photocatalyseurs a montré une dégradation efficace des polluants organiques, à la fois sous la lumière visible (λ ≥ 420 nm) et dans l'obscurité. En ce qui concerne le g-C₃N₄, nous avons exploité la relation entre les lacunes d’azote et les propriétés plasmoniques des nanoparticules d’or (Au). Ce type de photocatalyseur du Au/g-C₃N₄ a été préparé en présence d’alcali suivi par une post calcination. En effet, les lacunes d’azote ainsi produites permettent le renforcement des interactions entre l’or et le g-C₃N₄ et des propriétés plasmoniques de l’or. Ces caractéristiques exceptionnelles renforcent l'utilisation efficace de l’énergie solaire ainsi que la séparation des paires « électron-trou », ce qui contribuent à la performance photocatalytique pour la production d'hydrogène du photocatalyseur. Afin d’améliorer la capacité d’absorption de la lumière visible de g-C₃N₄, une nouvelle voie de synthèse dénommée « poly-alcaline » a été développée. La possibilité d’ajouter du polyéthylèneimine (PEI) et de l’hydroxyde de potassium (KOH) pour générer de nombreux centres lacunaires en azote ainsi que des groupes hydroxyles dans la structure du matériau, a été explorée afin d’optimiser l’efficacité du matériau. De telles modifications ont démontré leurs capacités à réduire la bande interdite et à provoquer plus facilement la séparation de charges améliorant ainsi les propriétés photocatalytiques du photocatalyseur vis-à-vis de la production d’hydrogène. Cette méthode ouvre donc une nouvelle voie d’avenir pour préparer des photocatalyseurs nanocomposites efficaces possédant à la fois, une forte d’absorption de la lumière et une bonne séparation de charges. / The utilization of solar light-driven photocatalysts has emerged as a potential approach to deal with the serious current energy and environmental issues. Over the past decades, semiconductor-based photocatalysis has attracted an increasing attention for diverse applications including hydrogen production and the decomposition of organic pollutants. Currently, titanium dioxide (TiO₂) and graphitic carbon nitride (g-C₃N₄)-based photocatalysts have been considered as the most investigated materials because of their low cost, outstanding physical and chemical properties. However, their photocatalytic performances are still moderate owing to the fast charge carrier recombination and limited light absorption. The main target of the research presented in this thesis is to develop novel routes to prepare efficient materials based on TiO₂ and g-C₃N₄. These materials possess prominent features, which contribute to address the fast charge separation and light absorption problems. We firstly have prepared triazine (CxNy) acting as an oxidation co-catalyst, which efficiently facilitates electron-hole separation in a Pt-TiO₂-CxNy hollow photocatalyst system. The co-existence of Pt and CxNy functioning as the reduction and oxidation co-catalysts, respectively, has remarkably enhanced the photocatalytic performance of TiO₂. Next, we have also developed a new approach employing the air- assisted carbon sphere combustion process in preparing C/Pt/TiO₂. This material possesses many salient properties that significantly boost the electron-hole separation leading to enhanced photocatalytic performance. In an attempt to design a material that can operate under sunlight and in darkness, we have introduced Pt-WO₃/TiO₂-Au double shell hollow photocatalyst. The material has shown not only strong solar light absorption but also efficient charge separation and electron storage capacity. As a result, this type of photocatalyst exhibits a high activity performance for the degradation of organic pollutants both under visible light (λ ≥ 420 nm) and in the dark. Regarding to g-C₃N₄, we have explored the relationship between nitrogen vacancies and the plasmonic properties of Au nanoparticles employing alkali associated with the post-calcination method to prepare Au/g-C₃N₄. In fact, the produced nitrogen vacancies in the structure of g-C₃N₄ essentially enhance the interaction at Au/g-C₃N₄ interface and the plasmonic properties of Au nanoparticles. These outstanding features contribute to enhance the utilization of solar light and electron-hole separation that prompt the photocatalytic performance towards hydrogen production. Finally, we have employed a novel poly-alkali route to prepare a strong visible light absorption photocatalyst-based g-C₃N₄. The co-existence of PEI and KOH, which induces numerous nitrogen vacancies and incorporated hydroxyl groups in the structure of the resulted material, has been explored for the first time. These modifications have been proved to narrow the bandgap and facilitate the charge separation leading to enhance the solar light-driven hydrogen production. This method also opens up a new approach to prepare efficient nanocomposite photocatalysts possessing both strong light absorption and good charge separation.
8

Nanocomposites à base de g-C3N4 et ZnxCd1-xS comme photocatalyseurs pour la production d'hydrogène à partir de l'eau sous la lumière solaire

Gholipour, Mohammad Reza 24 April 2018 (has links)
Le processus de photocatalyse est l'un des moyens prometteurs d'utiliser l'énergie solaire à grande échelle pour différents types d'applications tels que la production d'hydrogène comme énergie propre ou encore la purification de l'eau et l'air contre les polluants et les produits chimiques nocifs. Néanmoins, le pourcentage de l’énergie du rayonnement solaire utilisé est généralement inférieur à 1%, en raison de la faible absorption de la lumière solair, de la rapide recombinaison de charge « électron-trou paires » et de l'instabilité photochimique. La modification de la structure des semi-conducteurs et la création de photocatalyseurs nanocomposites peuvent aider à surmonter ces problèmes. Le TiO2 est le photocatalyseur le plus étudié en raison de ses propriétés physiques et chimiques imortantes dans le processus de photocatalyse. Bien que son faible coût encourage à l'utiliser à grande échelle, sa largeur de bande interdite (EG =3.2 eV) importante, qui ne peut être activée que par irradiation UV, et sa vitesse de recombinaison des charges, ont limité son utilisation dans les applications industrielles. La création d'une hétérojonction entre TiO2 et d'autres semiconducteurs actifs sous la lumière visible est l’un des moyens les plus prometteurs pour utiliser les propriétés du dioxyde de titane dans la région du visible. De plus, le nitrure de carbone graphitique (g-C3N4) a été largement étudié pour la production d'hydrogène sous irradiation lumineuse visible. Malgré le fait qu'il peut être actif dans la région du visible et réduire les protons pour générer de l'hydrogène, son efficacité est considérablement limitée en raison de son taux de recombinaison de charge élevé et de sa faible surface spécifique. Nous avons synthétisé un photocatalyseur nanocomposite de g-C3N4 et TiO2 afin d’améliorer la procédure de séparation des charges et donc de produire plus d'hydrogène. Des nanodisques de titanate uniformes (TND) avec un diamètre compris entre 12 et 35 nm ont été synthétisés à l’aide d’une méthode solvothermale. Les feuilles nanométriques de g-C3N4 ont été synthétisés par des techniques de sonication, puis ont été mélangées avec des TND. Après cela, une étape de calcination a non seulement généré des contacts intimes avec deux semi-conducteurs, mais aussi converti les TND en nanoparticules de TiO2. En raison de la position des bandes de valence et de conduction des deux semi-conducteurs, les électrons photogénérés sont en mesure de passer du g-C3N4 au TiO2. Grâce à l’ajout de Pt comme cocatalyseur ainsi que comme fournisseur de sites actifs, les électrons photoexcités sont en capacité de réduire les protons de l'eau et de générer du dihydrogène. Cette hétérojonction pourrait produire plus du double l’hydrogène que le gC3N4 pur dans les mêmes conditions. Nous avons créé une nouvelle forme de feuille nanométrique de g-C3N4 contenant des lacunes de carbone avec des trous dans tous les plans de feuille. Après la synthèse du matériau de vrac g-C3N4 à partir du dicyandiamide, le matériau obtenu a été chauffé à 650 ° C sous argon pendant 2 h. Après avoir refroidi, il a été calciné à nouveau à 500 ºC pendant 2 heures sous air. Ainsi, sa surface spécifique a été considérablement augmenté de 28 m2.g-1 de g-C3N4 à 160 m2.g-1. En outre, ces traitements par étapes ont introduit certains défauts tels que des lacunes de carbone à l'intérieur de la structure des feuilles nanométriques de g-C3N4. Ces derniers ont fourni des sites photocatalytiques hautement actifs pour l'évolution de l'hydrogène. Par conséquent, sa production d'hydrogène est dix fois supérieure à celle du g-C3N4 brut sous irradiation de la lumière visible. Il a montré une efficacité quantique très élevée de 29,2% et 21,3% à 400 nm et 420 nm, respectivement. Enfin, nous avons généré une solution solide de zinc-cadmium (ZnxCd1-xS) par synthèse solvothermale en utilisant des précurseurs de glycérates métalliques de Cd et Zn. Ensuite, le matériau a été calciné (500 ºC pendant 4 heures) et traité avec H2S à 450 ºC pendant 2 heures. Ainsi, une solution solide homogène de ZnxCd1-xS avec structure cristallographique de wurtzite hexagonale a été formée. Il convient de mentionner que le semi-conducteur obtenu peut absorber une large partie du spectre visible, de plus, sa largeur de bande interdite est fortement affecté par le rapport Zn / Cd et varie entre 2,35 et 3,4 eV (0≤x≤1). Les meilleurs résultats pour l'évolution de l'hydrogène ont été obtenus à partir de l'échantillon Zn30Cd70S avec dépôt de MoS2 comme cocatalyseur. Il peut générer de l'hydrogène dans des longueurs d'onde les plus longues de la région de la lumière visible et ses rendements quantiques sont : 46,6% à 400 nm à 23,4% à 500 nm ainsi que 11,3% à 550 nm. / Photocatalysis process is one of the promising ways to use solar energy in large scale for various kind of application including producing hydrogen as clean energy and purify water and air from harmful pollutants and chemicals. Nevertheless, the solar conversion efficiency of photocatalysts are usually below 1% because of weak sunlight absorption, high charge recombination and high photochemical instability. Modifying semiconductor structure and creating nanocomposite photocatalyst can help to overcome these issues. TiO2 is the most well-known photocatalysts because of its physical and chemical properties in photocatalysis process. Although its low cost encourages people to utilize it in large scale, its large band gap, which can only be activated under UV irradiation, and high rate of charge recombination, limited its usage in industrial applications. Creating an heterojunction between TiO2 and others visible light active semiconductor, is one of the best way to take advantage of TiO2 in visible region. Furthermore, graphitic carbon nitride (g-C3N4) has been widely investigated for its potential in hydrogen production under visible light irradiation. Despite the fact that it can activated in visible light region and reduce protons to generate hydrogen, its efficiency is considerably limited because of its high rate of charge recombination and low specific surface area. We synthesized a nanocomposite photocatalyst of g-C3N4 and TiO2 in order to increase charge separation procedure and so it can produce more hydrogen. Uniform titanate nanodisks (TNDs) with diameter between 12 and 35 nm were synthesized with a solvothermal method. Nanosheets of g-C3N4 were synthesized via sonication techniques and then were mixed with TNDs. After that, a calcination step not only made intimate contacts with two semiconductors, but also converted TNDs into TiO2 nanoparticles. Due to the position of conduction band edges of two semiconductors, photogenerated electrons could transfer from g-C3N4 to TiO2. There with a help of Pt as a cocatalyst and active sites provider, photoexcited electrons reduced protons from water and generated hydrogen. This heterojunction could produce more than double hydrogen as pristine g-C3N4 under the same conditions. We created a novel g-C3N4 nanosheets with carbon vacancies and nanoholes throughout nanosheet planes. After synthesis g-C3N4 bulk material from dicyandiamide, the obtained material was heated to 650 ºC under argon flow for 2 hr. After it cooled down, it was calcined again at 500 ºC for 2 hr. As a result, its specific surface area increased significantly from 28 m2 g-1 of bulk g-C3N4 to 160 m2 g-1. Moreover, these stepwise treatments introduced some defects as carbon vacancies inside the structure of g-C3N4 nanosheets. They provided highly active photocatalytic sites for hydrogen evolution. Therefore, its hydrogen production was ten times higher than bulk material of g-C3N4 under visible light irradiation. It showed very high quantum efficiencies of 29.2% and 21.3% at 400 nm and 420 nm, respectively. Finally, we generated zinc cadmium solid solution (ZnxCd1-xS) with synthesizing metal-glycerate of Cd and Zn via solvothermal method. Then, the material was calcined (500 ºC for 4 hr) and treated with H2S at 450 ºC for 2hr. Thus, an homogeneous solid solution of ZnxCd1-xS with hexagonal wurtzite crystal structure was formed. It should be mentioned that the obtained semiconductor could absorb a wide range of visible light energy and its band gap is strongly affected by Zn/Cd ratio and varies between 2.35 and 3.4 eV (0≤x≤1). The best results for hydrogen evolution was gained from Zn30Cd70S sample with depositing MoS2 as a cocatalyst. It could generate hydrogen in longer wavelengths of visible light region and its quantum efficiencies were: 46.6 % at 400 nm to 23.4% at 500 nm as well as 11.3% at 550 nm.
9

Étude comparative de combinaisons de peptides pour la livraison de protéines dans les cellules de mammifères

Lepetit-Stoffaes, Jean-Pascal 18 April 2019 (has links)
Encore aujourd'hui, l’expression de protéines recombinantes dans les cellules de mammifères se fait principalement par transfection d’acides nucléiques codant pour cette protéine. Or, une alternative, la livraison directe de protéines, suscite un intérêt grandissant depuis près de trente ans, avec la découverte de séquences peptidiques ayant la capacité de pénétrer les cellules et de déstabiliser les membranes. Ainsi, des stratégies de livraison de protéines employant ces peptides se sont détachées des systèmes synthétiques tels que les polymères et les lipides cationiques. Parmi ces peptides, on retrouve notamment, d’une part, les peptides de pénétration cellulaire (Cell Penetrating Peptides - CPP) qui sont capables d’amener une protéine liée dans la cellule par endocytose, mais peinent à franchir la barrière endosomale ; d'autre part, des peptides de fuite des endosomes (Endosomal Leakage Domains - ELD), permettant de déjouer ce goulot d’étranglement de la livraison. Cette thèse s'intéresse principalement à l’étude de la livraison de protéines via la combinaison de CPP et d’ELD. Une avenue d'intérêt qui a été identifiée consiste à co-incuber les cellules avec différentes combinaisons d'un mélange de ces peptides avec la protéine à livrer, sans liaison covalente. Ainsi, les peptides CPP-ELDs ont permis de livrer la protéine fluorescente GFP seule, mais aussi la GFP fusionnée à un domaine d’importation nucléaire qui a pu rejoindre le noyau de divers types cellulaires. En particulier, le peptide 6His-CM18-PTD4 a été particulièrement investigué pour la livraison de diverses protéines d’intérêt. 6His-CM18-PTD4 a permis la livraison du facteur de transcription HoxB4 ainsi que des nucléases Cas9 et Cpf1 pour réaliser leur fonction d’édition génomique. Les propriétés et mécanismes de livraison des CPP-ELDs ont été étudiés. Ainsi, des mécanismes d’endocytose et de translocation directe vers le cytoplasme ont été identifiés et étudiés. La répartition entre ces voies d’entrée cellulaire peut varier suivant la nature du peptide CPP-ELD ou de divers facteurs de livraison tels que sa concentration. Globalement, les mécanismes de livraison ont été étudiés par l’emploi de la protéine GFP et d’autres sondes fluorescentes (calcéine, FITC-dextranes). Les CPP-ELDs sont capables de livrer des molécules de petite taille (600 Da) jusqu’à des poids moléculaires importants (250 kDa). Cette capacité à livrer de grandes protéines a été validée par l’entrée cellulaire des nucléases Cas9 et Cpf1, ainsi que d’anticorps. L’analyse de la composition ainsi que des structures secondaires supposées a permis d’identifier des critères nécessaires pour l’efficacité de livraison dans les cellules de mammifères pour des applications de recherche et thérapeutiques. / The expression of proteins in mammalian cells is still today mostly done by transfection of nucleic acids coding for the protein. An alternative, the direct delivery of proteins, has roused a growing interest for the past thirty years, since the discovery of peptide sequences with the capacity to penetrate the cells and destabilize the membranes. Thereby, strategies of protein delivery associating these peptides to the cargo protein differentiate from synthetic systems like cationic polymers and lipids. Among these peptides are found Cell Penetrating Peptides (CPP), which are able to bring a linked protein to the cell by endocytosis, but lack to cross the endosomal barrier. We also find peptides, which permit the endosomal escape of a cargo, the Endosomal Leakage Domains (ELD), in order to evade this bottleneck. This thesis is interested in the study of protein delivery, by means of the combination of CPP and ELD. An identified way of interest consists in co-incubating the mammalian cells with different combinations of a mix of these peptides with the protein to be delivered, without covalent link. Thereby, the CPP-ELDs permitted the delivery of the GFP fluorescent protein alone, as well as the GFP in fusion with a nuclear localization domain, which was found in the nuclei of several cellular types. In particular, the 6His-CM18-PTD4 peptide has been notably investigated for the delivery of various proteins. It enabled the delivery of the HoxB4 transcription factor, as well as the Cas9 and Cpf1 nucleases to realize their genome editing function. The properties and mechanisms of CPP-ELDs have been studied. Therefore, the endocytosis mechanism and the direct translocation to the cytoplasm have been identified and studied. The balance between these cellular pathways can vary depending on the nature of the CPP and the ELD, and on the delivery factors such as the peptide concentration. Overall, the delivery mechanisms have been studied by using GFP protein, and other fluorescent probes (calcein and FITC-Dextrans). The CPP-ELDs are able to deliver small size molecules (600 Da) to molecules with high molecular weight (250 kDa). The capacity to deliver big proteins has been confirmed by the cellular entry of the Cas9 and Cpf1 nucleases, but also with antibodies. The analysis of the biochemical properties and assumed secondary structures allowed identifying several criteria required for the efficient delivery in mammalian cells, for discovery and therapeutic applications.
10

Développement et caractérisation de films biodégradables à base d'acide polylactique et de chitosane

Dabaghi Zadeh, Erfan 20 September 2018 (has links)
Récemment, la protection de l'environnement à travers le développement de matériaux biodégradables est devenue un sujet pour de nouvelles recherches. D'autre part, les polymères biodégradables ont démontré une efficacité raisonnable pour surmonter la restriction des ressources pétrochimiques dans l'avenir. L'objectif principal de cette étude est de développer des films biodégradables à partir de chitosane (CS) et de l'acide polylactique (PLA) comme des biopolymères de base pour les emballages alimentaires. Des mélanges de films biodégradables de CS et de PLA ont été préparés par la technique de synthèse en solution. Malgré les bonnes propriétés du CS et du PLA, telles que la résistance à l'humidité, les propriétés mécaniques élevées du PLA et les propriétés antimicrobiennes du CS, il existe plusieurs limites lorsqu'on mélange ces matériaux dont l'immiscibilité et le manque de ductilité mènent à des films hétérogènes avec une grande sensibilité à l'eau. Néanmoins, l’ajout d’autres composants, tels que le polycaprolactone (PCL) et le polyéthylène glycole (PEG), est fortement approprié pour améliorer respectivement l'adhérence interfaciale du système PLA/CS et sa ductilité. Tous les films développés dans le cadre de ce projet ont été de évalués en termes d’améliorations des propriétés mécaniques, de température de transition vitreuse Tg (pour évaluer la miscibilité entre le CS et le PLA) et de perméabilité à l'oxygène. / Environment protection through the development of biodegradable materials has become a principal subject for novel investigations in recent years. On the other hand, biodegradable polymers have demonstrated a reasonable efficiency to overcome the restriction of petrochemical resources in the future. The main objective of this study is to develop biodegradable films from chitosan (CS) and polylactic acid (PLA) as base bio-polymers for food packaging. Biodegradable films of CS and PLA were prepared by the solution-casting technique. Despite the desirable properties of CS and PLA, such as moisture resistance and high mechanical properties of PLA and antimicrobial properties of chitosan films, several drawbacks in blending these materials were observed. These drawbacks include CS/PLA immiscibility and lack of ductility leading to some remaining particles in the final films and heterogeneous films with high water sensitivity. Nevertheless, the addition of polycaprolactone (PCL) and polyethylene glycol (PEG) is strongly suitable to improve PLA/CS interfacial adhesion and PLA/CS film ductility. All the blend films were evaluated in terms of improvement of their mechanical properties, their glass transition temperature Tg (to evaluate the miscibility between CS and PLA) and their oxygen permeability.

Page generated in 0.4126 seconds