• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] DAILY ELECTRICITY FORECASTING IN LOAD LEVELS, COMBINING STATISTICAL AND COMPUTATIONAL INTELLIGENCE TOOLS / [pt] PREVISÃO DA CARGA DE ENERGIA DIÁRIA EM PATAMARES COMBINANDO TÉCNICAS ESTATÍSTICAS E DE INTELIGÊNCIA COMPUTACIONAL

DOUGLAS ALEXANDER ALVES DE FARIAS 31 March 2009 (has links)
[pt] Esta dissertação apresenta um estudo sobre o comportamento da carga de energia agregada em intervalos temporais dentro de um mesmo dia. Esse tipo de agregação já vem sendo utilizado no setor elétrico brasileiro, sob a forma de três patamares de carga, denominados leve, média e pesada. No entanto, tais patamares são sempre obtidos indiretamente, a partir da agregação da carga horária, não tendo sido encontrado, até a publicação dessa dissertação, nenhum tratamento de forma direta dos mesmos. O trabalho desenvolvido na dissertação descreve matematicamente o cálculo dos três patamares de carga e faz uma análise das séries dessas variáveis, verificando suas características próprias, relações entre si e a influência de variáveis exógenas. Apresenta, também, a modelagem de alguns métodos de previsão para essas séries, empregando técnicas tanto estatísticas quanto de inteligência computacional e propõe um modelo híbrido de previsão, combinando regressão dinâmica, classificador de padrões, lógica nebulosa e um método para combinar os padrões. No modelo proposto, a regressão dinâmica é empregada na previsão da carga diária global, usada para adequar os perfis, descritos de forma normalizada, aos níveis reais das séries. Os perfis são obtidos a partir de um classificador de padrões baseado na técnica subtractive clustering. A combinação dos perfis, que compõem a previsão dos patamares para o horizonte desejado, é feita por um sistema de lógica nebulosa, que usa a temperatura como variável de entrada, tratando de forma intrínseca relações não lineares entre essas variáveis, e um método que trata a saída do sistema nebuloso de forma empírica. / [en] This dissertation presents a study of electricity load aggregated in time intervals into the same day. This type of aggregation has been used by the Brazilian´s electrical sector in the form of three load levels called low, middle and high. However, these load levels were always indirectly achieved from the hourly load aggregation, and it was not found any direct treatment of them as a series up to this publication. The work developed in this dissertation describes mathematically the calculation of the three levels of load and makes an analysis of the series formed by these variables checking their own characteristics, the relationship among themselves and the influence of exogenous variables. It also shows the modeling of some forecast methods for such series employing techniques of both statistics in computational intelligence, introduces the level profile concept and proposes a hybrid model of forecasting, formed by dynamic regression, pattern classification and fuzzy logic, to predict the load level pattern. In the proposed model, the dynamic regression is used in the forecasting of the daily global load that is used to match the resulting pattern, described in a normalized way to the actual load values. The profiles are obtained from a classifier based on the subtractive clustering technique. The combination of the profiles that compose the level pattern forecast to the desired horizon is carried out by a fuzzy logic system that uses the temperature as input variable intrinsically treating non-linear relationships between load level and temperature variables.
2

Reconfiguração de sistemas de distribuição considerando incertezas através de fluxo de potência intervalar e sistemas imunológicos artificiais

Seta, Felipe da Silva 10 August 2015 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-01-19T10:47:34Z No. of bitstreams: 1 felipedasilvaseta.pdf: 1053075 bytes, checksum: 8a24a576cad55e9b46efe4bde9405104 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-01-25T17:44:56Z (GMT) No. of bitstreams: 1 felipedasilvaseta.pdf: 1053075 bytes, checksum: 8a24a576cad55e9b46efe4bde9405104 (MD5) / Made available in DSpace on 2016-01-25T17:44:56Z (GMT). No. of bitstreams: 1 felipedasilvaseta.pdf: 1053075 bytes, checksum: 8a24a576cad55e9b46efe4bde9405104 (MD5) Previous issue date: 2015-08-10 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O presente trabalho propõe uma metodologia para a resolução do problema de reconfiguração ótima de sistemas de distribuição de energia elétrica utilizando uma representação mais realista de parâmetros com incertezas. O objetivo é avaliar o impacto de se representar incertezas dos sistemas no problema de reconfiguração em relação a modelos tradicionais determinísticos. O modelo de reconfiguração probabilística proposto visa minimizar as perdas totais de energia considerando incertezas sobre a demanda e sobre a geração distribuída a partir da energia eólica, além de diferentes níveis de carregamento dos sistemas. A metodologia proposta é baseada na técnica meta-heurística Sistema Imunológico Artificial. Os fundamentos da matemática intervalar são incorporados em um fluxo de potência intervalar que modela as incertezas da demanda provenientes principalmente de erros de previsão e medição, bem como incertezas na geração por fontes eólicas devido a intermitências nos regimes de ventos. Desta forma, as variáveis de entrada intervalares são as demandas ativas e reativas das barras do sistema e os valores de velocidade de vento nas regiões das usinas eólicas. As incertezas da entrada são propagadas para as variáveis de saída do fluxo de potência, como as tensões nodais. Como resultado, as perdas totais de energia a serem minimizadas também são determinadas na forma intervalar. Uma metodologia para comparação de intervalos baseada na média e no raio dos intervalos é utilizada para determinar a topologia ótima. Restrições de tensão, radialidade e conectividade da rede são consideradas. O algoritmo proposto é testado em sistemas conhecidos da literatura. / The present work proposes a methodology to solve the problem of optimal reconfiguration of power distribution systems by using a more realistic representation of uncertain parameters. The objective is to evaluate the impact of representing uncertainties in the reconfiguration problem in relation to traditional deterministic models. The proposed probabilistic reconfiguration model aims at minimizing the total energy loss considering uncertainties on the load demand and the distributed generation from wind energy, as well as different load levels. The proposed methodology is based on the meta-heuristic technique Artificial Immune System. The interval mathematics fundamentals are embedded in an interval power flow that models the uncertainties of load forecast and measurements, as well as uncertainties due to the intermittences of the wind. Therefore, the input interval variables are the active and reactive loads at the network nodes and the wind speed in the regions where the wind farms are installed. The input uncertainties are thus propagated to the output power flow variables as the nodal voltages. As a result, the total energy losses to be minimized are also given in interval form. A methodology for comparing intervals that is based on the interval average and size is used to determine the best topology. Voltage constraints, radial configuration and network connectivity are considered. The proposed algorithm is tested in systems known in the literature.

Page generated in 0.0533 seconds