• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Embedded thermoelectric devices for on-chip cooling and power generation

Sullivan, Owen A. 14 November 2012 (has links)
Thermoelectric devices are capable of providing both localized active cooling and waste heat power generation. This work will explore the possibility of embedding thermoelectric devices within electronic packaging in order to achieve better system performance. Intel and Nextreme, Inc. have produced thin-film superlattice thermoelectric devices that have above average performance for thermoelectrics and are much thinner than most devices on the market currently. This allows them to be packaged inside of the electronic package where the thermoelectric devices can take advantage of the increased temperatures and decreased thermal lag as compared to the devices being planted on the outside of the package. This work uses the numerical CFD solver FLUENT and the analog electronic circuit simulator SPICE to simulate activity of thermoelectric devices within an electronics package.
2

Reliability Based Design Methods Of Pile Foundations Under Static And Seismic Loads

Haldar, Sumanta 04 1900 (has links)
The properties of natural soil are inherently variable and influence design decisions in geotechnical engineering. Apart from the inherent variability of the soil, the variability may arise due to measurement of soil properties in the field or laboratory tests and model errors. These wide ranges of variability in soil are expressed in terms of mean, variance and autocorrelation function using probability/reliability based models. The most common term used in reliability based design is the reliability index, which is a probabilistic measure of assurance of performance of structure. The main objective of the reliability based design is to quantify probability of failure/reliability of a geotechnical system considering variability in the design parameters and associated safety. In foundation design, reliability based design is useful compared to deterministic factor of safety approach. Several design codes of practice recommend the use of limit state design concept based on probabilistic models, and suggest that, development of reliability based design methodologies for practical use are of immense value. The objective of the present study is to propose reliability based design methodologies for pile foundations under static and seismic loads. The work presented in this dissertation is subdivided into two parts, namely design of pile foundations under static vertical and lateral loading; and design of piles under seismic loading, embedded in non-liquefiable and liquefiable soil. The significance of consideration of variability in soil parameters in the design of pile foundation is highlighted. A brief review of literature is presented in Chapter 2 on current pile design methods under vertical, lateral and seismic loads. It also identifies the scope of the work. Chapter 3 discusses the methods of analysis which are subsequently used for the present study. Chapter 4 presents the reliability based design methodology for vertically and laterally loaded piles based on cone penetration test data for cohesive soil. CPT data from Konaseema area in India is used for analysis. Ultimate limit sate and serviceability limit state are considered for reliability based design using CPT data and load displacement curves. Chapter 5 presents the load resistance factor design (LRFD) of vertically and laterally loaded piles based on load test data. Reliability based code calibrated partial factors are determined considering bias in failure criteria, model bias and variability in load and resistance. Chapter 6 illustrates a comprehensive study on the effect of soil spatial variability on response of vertically and laterally loaded pile foundations in undrained clay. Two-dimensional finite difference program, FLAC2D (Itasca 2005) is used to model the soil and pile. The response of pile foundations due to the effect of variance and spatial correlation of undrained shear strength is studied using Monte Carlo simulation. The influence of spatial variability on the propagation and formation of failure near the pile foundation is also examined. Chapter 7 describes reliability based design methodology of piles in non-liquefiable soil. The seismic load on pile foundation is determined from code specified elastic design response spectrum using pseudo-static approach. Variability in seismic load and soil undrained shear strength are incorporated. The effects of soil relative densities, pile diameters, earthquake predominant frequencies and peak acceleration values on the two plausible failure mechanisms; bending and buckling are examined in Chapter 8. The two-dimensional finite difference analysis is used for dynamic analysis. A probabilistic approach is proposed to identify governing failure modes of piles in liquefiable soil in Chapter 9. The variability in the soil parameters namely SPT-N value, friction angle, shear modulus, bulk modulus, permeability and shear strain at 50% of modulus ratio is considered. Monte Carlo simulation is used to determine the probability of failure. A well documented case of the failed pile of Showa Bridge in 1964 Niigata earthquake is considered as case example. Based on the studies reported in this dissertation, it can be concluded that the reliability based design of pile foundations considering variability and spatial correlation of soil enables a rational choice of design loads. The variability in the seismic design load and soil shear strength can quantify the risk involved for pile design in a rational basis. The identification of depth of liquefiable soil layer is found to be most important to identify failure mechanisms of piles in liquefiable soil. Considerations of soil type, earthquake intensity, predominant frequency of earthquake, pile material, variability of soil are also significant.
3

Reliability-based Design Procedure for Flexible Pavements

Dinegdae, Yared Hailegiorgis January 2015 (has links)
Load induced top-down fatigue cracking has been recognized recently as a major distress phenomenon in asphalt pavements. This failure mode has been observed in many parts of the world, and in some regions, it was found to be more prevalent and a primary cause of pavements failure. The main factors which are identified as potential causes of top down fatigue cracking are primarily linked to age hardening, mixtures fracture resistance and unbound layers stiffness. Mechanistic Empirical analytical models, which are based on hot mix asphalt fracture mechanics (HMA-FM) and that could predict crack initiation time and propagation rate, have been developed and shown their capacity in delivering acceptable predictions. However, in these methods, the effect of age hardening and healing is not properly accounted and moreover, these models do not consider the effect of mixture morphology influence on long term pavement performance. Another drawback of these models is, as analysis tools they are not suitable to be used for pavement design purpose. The main objective of this study is to develop a reliability calibrated design framework in load resistance factor design (LRFD) format which could be implemented to design pavement sections against top down fatigue cracking. For this purpose, asphalt mixture morphology based sub-models were developed and incorporated to HMA-FM to characterize the effect of aging and degradation on fracture resistance and healing potential. These sub-models were developed empirically exploiting the observed relation that exist between mixture morphology and fracture resistance. The developed crack initiation prediction model was calibrated and validated using pavement sections that have high quality laboratory data and observed field performance history. As traffic volume was identified in having a dominant influence on predicted performance, two separate model calibration and validation studies were undertaken based on expected traffic volume. The predictions result for both model calibration and validation was found to be in an excellent agreement with the observed performance in the field. A LRFD based design framework was suggested that could be implemented to optimize pavement sections against top-down fatigue cracking. To achieve this objective, pavement sections with various design target reliabilities and functional requirements were analyzed and studied.  A simplified but efficient limit state equation was generated using a central composite design (CCD) based response surface methodology, and FORM based reliability analysis was implemented to compute reliabilities and formulate associated partial safety factors. A design example using the new partial safety factors have clearly illustrated the potential of the new method, which could be used to supplement existing design procedures. / <p>QC 20150427</p>
4

NUMERICAL INVESTIGATION OF CLOSELY SPACED ANCHOR GROUPS UNDER DIFFERENT GEOMETRIC AND LOADING CONDITIONS

Muhammad Fasih ur Rehman (14222801) 17 May 2024 (has links)
<p>  </p> <p>Post-installed bonded anchors find a wide range of application in construction industry due to their versatility and flexibility in accommodating diverse engineering needs. Engineering practices often encounter situations where space constraints within a building member lead to unusual anchor group geometric configurations. Multiple anchor groups with small inter-group spacing (closely spaced anchor groups) emerge as a result. The stress-field and overall behaviour of individual anchor groups is affected by the presence of other closely spaced anchor groups. Situation become more intricate when these closely-spaced anchor groups are installed in close proximity of edge, subjected to different loading conditions and involve different eccentric loading scenarios.</p> <p>The current design standards provide limited and very conservative guidelines for designing and analysing closely spaced anchor groups where spacing between neighbouring anchor groups is less than the critical anchor spacing. This paper presents a 3-dimensional (3D), Finite Element (FE) study on the tension and shear behaviour of closely spaced anchor groups under various geometric and loading conditions. Different parameters such as inter-group spacing, presence of nearby edge and loading positions (eccentricities and symmetry of loading) for models loaded in tension, are numerically investigated. In case of shear loads, anchor groups with similar / different edge distance in the direction of loading and different loading positions are investigated. In this study, concrete cone break-out failure for tension loaded anchor groups and concrete edge failure for shear loaded anchor groups are considered as critical failure modes. </p> <p>Numerical analysis is carried out using microplane model for concrete with relaxed kinematic constraint as the constitutive law. 3D, finite element, Mascroscopic Space Analysis (MASA) program is used to numerically investigate the behavior of closely spaced anchor groups under different geometric and loading conditions. The numerical modelling approach is first verified and validated against available experimental results on anchor groups and then used to carry out a detailed and systematic study. Parametric study on a wide range of geometric configurations containing multiple anchor groups subjected to different loading positions (centric / eccentric) is carried out.</p> <p>Comparison study is conducted to check the numerical resistance capacities against analytical values calculated using existing concrete capacity design (CCD) method incorporating existing reduced embedment depth / edge distance approach and newly developed virtual edge approach. The virtual edge approach considers a virtual edge to assign individual tributary areas to individual anchor groups in calculating the concrete breakout resistance of anchorages. Evaluation of results indicate that virtual edge approach is appropriate, rational and reasonably conservative to consider the influence of presence of neighbouring anchor group on the capacity of given anchorage. A new set of guidelines is recommended to design closely space anchor groups for arbitrary geometric and loading conditions.</p>

Page generated in 0.0663 seconds