Spelling suggestions: "subject:"load unit"" "subject:"load knit""
1 |
Optimisation of BMW Group Standardised Load Units via the Pallet Loading ProblemHeinze, Anja January 2006 (has links)
<p>The BMW Group uses load units for the transportation of assembly parts from the suppliers to the plants and for the internal material flow. This thesis analyses the advantageousness of introducing a load unit with a new size. There are three reasons why the current choice of containers is not sufficient. Firstly, there is a certain range of assembly parts that does not fit very well into the existing standard load units. Secondly, the average measurements of the parts have grown in the last years and thirdly, several of the existing containers leave unused space in the transportation vehicles.</p><p>For this the relevant costs and other, more qualitative aspects like the placing at the assembly line are considered. A container size is identified that offers a significant savings potential. For this potential the handling and transportation costs are identified as the relevant leverages. These costs are found to depend mainly on the utilisation degree of the load units.</p><p>To calculate the different utilisation degrees, a packing-algorithm in form of a four-block heuristic is applied and its results are extrapolated on the basis of existing BMW packing information. Thus, several assembly parts are identified that fit better into the suggested load unit than in the existing ones. These results are assessed using BMW’s expense ratios for handling and transportation. 80 parts are determined for which the migration to the new size would result in savings of more than 5,000 EUR for each per year in Dingolfing. Together, these parts offer a savings potential of about 0.9 million Euro.</p>
|
2 |
Optimisation of BMW Group Standardised Load Units via the Pallet Loading ProblemHeinze, Anja January 2006 (has links)
The BMW Group uses load units for the transportation of assembly parts from the suppliers to the plants and for the internal material flow. This thesis analyses the advantageousness of introducing a load unit with a new size. There are three reasons why the current choice of containers is not sufficient. Firstly, there is a certain range of assembly parts that does not fit very well into the existing standard load units. Secondly, the average measurements of the parts have grown in the last years and thirdly, several of the existing containers leave unused space in the transportation vehicles. For this the relevant costs and other, more qualitative aspects like the placing at the assembly line are considered. A container size is identified that offers a significant savings potential. For this potential the handling and transportation costs are identified as the relevant leverages. These costs are found to depend mainly on the utilisation degree of the load units. To calculate the different utilisation degrees, a packing-algorithm in form of a four-block heuristic is applied and its results are extrapolated on the basis of existing BMW packing information. Thus, several assembly parts are identified that fit better into the suggested load unit than in the existing ones. These results are assessed using BMW’s expense ratios for handling and transportation. 80 parts are determined for which the migration to the new size would result in savings of more than 5,000 EUR for each per year in Dingolfing. Together, these parts offer a savings potential of about 0.9 million Euro.
|
3 |
Development of Test Methodology for Electromechanical Linear ActuatorsLinder, Isak January 2022 (has links)
This master thesis aims to develop a test methodology for electromechanical linear actuators. A linear actuator acts as a linear motor, converting a power source to linear motion. The electromechanical linear actuator in this project has an electric motor as its power source and uses a rack and pinion system to transfer that power to linear motion. The test methodology is to impose a force onto the rack of the actuator, to ensure that operation under a load scenario is within specification. To accomplish this, the design of a test rig implementation is analyzed. The test rig consists of the test unit, which is to be tested, the load unit, which is to provide the load force, and a control system for the load unit. The load unit is another linear actuator and is controlled via a load cell. The load cell gives out the load force being applied, and the controller gives out the corresponding appropriate motor command to the load unit to ensure the load force is as desired. This analysis is done through simulation of the setup. Viable options for the setup were first analyzed in order to implement the deemed promising options for a setup into a simulation environment. The simulation environment in this project was Simscape, an extension of MATLAB’s Simulink. In simulation the parameters for the test rig were rigorously analyzed, in order to determine acceptable thresholds. The primary load unit tested was another electromechanical linear actuator from Cascade Drives, the model A-100-8P. Two secondary setups, one using the same model as being tested, and another setup using two of the models being tested. Simulation found that the suggested options’ applied load force have a poor rise time, large overshoot and substantial oscillation errors. The primary source for this was determined to be the latency between load cell input, and motor command output in the controller. The poor metrics from the result could lead to problems when emergency braking, and with a long honing period, which would render most test data unusable.
|
Page generated in 0.0591 seconds