• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Methods for characterizing mechanical properties of wood cell walls via nanoindentation

Meng, Yujie 01 August 2010 (has links)
Nanoindentation is a method of contacting a material whose mechanical properties are unknown with another material whose properties are known. Nanoindentation has the advantage of being able to probe a material’s microstructure while being sensitive enough to detect variations in mechanical properties. However, nanoindentation has some limitations as a testing technique due to the specific formation and structure of some biomaterials. The main objective of this research is to identify any factors that influence the nanoindentation measurement of wood cell walls (a typical biomaterial). The function of the embedding media in describing the properties of wood cells is poorly understood. This research demonstrated that Spurr’s resin, when diffused into wood cell wall during the embedding process, enhanced both the Young’s modulus and hardness of the cell walls. A substitute sample preparation method was developed to avoid this resin penetration into cell wall and was determined to be both effective and easy to perform. The nanoindentation procedure involves the application of a monitor and an analysis of the load-displacement behavior and the response in the material. It can be anticipated that various ways of loading, including the maximum force, the loading time, and others, will cause a variety of mechanical properties. Thus, our second aim was to study the effect of load function on nanoindentation measurement in wood. It was discovered that a fast loading rate contributed to greater contact depth and lower hardness. Increasing the holding time decreased measured values for both Young’s modulus and hardness. However, no significant difference of Young’s modulus and hardness among three loading functions with different unloading rates. The final part of the research was to study the effect of moisture content on the micromechanical properties of wood material. Several nanoindentations were performed on the wood cell wall while varying the moisture content of wood. Results indicated that both the Young’s modulus and hardness decreased significantly with an increase of moisture content. A rheology model was developed to describe the nanoindentation behaviors of wood cell walls at different moisture contents. Five parameters were extracted from Burger’s model, and the relationships among those five parameters were quantified.
2

Methods for characterizing mechanical properties of wood cell walls via nanoindentation

Meng, Yujie 01 August 2010 (has links)
Nanoindentation is a method of contacting a material whose mechanical properties are unknown with another material whose properties are known. Nanoindentation has the advantage of being able to probe a material’s microstructure while being sensitive enough to detect variations in mechanical properties. However, nanoindentation has some limitations as a testing technique due to the specific formation and structure of some biomaterials. The main objective of this research is to identify any factors that influence the nanoindentation measurement of wood cell walls (a typical biomaterial).The function of the embedding media in describing the properties of wood cells is poorly understood. This research demonstrated that Spurr’s resin, when diffused into wood cell wall during the embedding process, enhanced both the Young’s modulus and hardness of the cell walls. A substitute sample preparation method was developed to avoid this resin penetration into cell wall and was determined to be both effective and easy to perform.The nanoindentation procedure involves the application of a monitor and an analysis of the load-displacement behavior and the response in the material. It can be anticipated that various ways of loading, including the maximum force, the loading time, and others, will cause a variety of mechanical properties. Thus, our second aim was to study the effect of load function on nanoindentation measurement in wood. It was discovered that a fast loading rate contributed to greater contact depth and lower hardness. Increasing the holding time decreased measured values for both Young’s modulus and hardness. However, no significant difference of Young’s modulus and hardness among three loading functions with different unloading rates.The final part of the research was to study the effect of moisture content on the micromechanical properties of wood material. Several nanoindentations were performed on the wood cell wall while varying the moisture content of wood. Results indicated that both the Young’s modulus and hardness decreased significantly with an increase of moisture content. A rheology model was developed to describe the nanoindentation behaviors of wood cell walls at different moisture contents. Five parameters were extracted from Burger’s model, and the relationships among those five parameters were quantified.

Page generated in 0.0833 seconds