• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Factors affecting penetration of acrylic resin in crust leather during retanning process

Song, Y., Zeng, Yunhang, Cao, M., Shi, B. 26 June 2019 (has links)
Content: Acrylic resin (AR) is a most popular retanning agent due to its selective filling property and advantage of formaldehyde-free. The retanning performance of acrylic resin mainly depends on its penetration depth and filling parts in leather. Therefore, to improve the retanning performance, it is necessary to fully understand the factors affecting the mass transfer and the distribution of acrylic resin in leather. We have found that the structure and the charge of leather and the dosage of acrylic resin rather than the molecular weight of acrylic resin are important factors affecting the penetration rate of acrylic resin in crust leather by using fluorescent tracer technique. In this study, from the view of electrostatic interaction, effects of neutralizing pH and retanning auxiliaries such as phenol sulfonic acid condensation (PSAC) and sodium carboxymethylcellulose (CMC) on the penetration and the distribution of acrylic resin in crust leather were investigated. Higher neutralizing pH led to a faster transfer of acrylic resin in leather because of the decrease in the positive charges of chrome-tanned leather (isoelectric point 7.1) and the increase in the negative charges of acrylic resin. Employing PSAC and CMC enhanced acrylic resin transfer in crust leather due to the dramatic increase in the negative charges of acrylic resin. These results indicated that decreasing the electrostatic binding force between acrylic resin and crust leather is beneficial to the penetration of acrylic resin in leather, which could be achieved by adjusting the neutralizing pH or using acrylic resin together with proper retanning auxiliaries. Take-Away: 1. Using phenol sulfonic acid condensation and sodium carboxymethylcellulose enhanced acrylic resin transfer in crust leather. 2. Decreasing electrostatic binding force between acrylic resin and crust leather is beneficial to penetration of acrylic resin in leather. 3. Increasing neutralizing pH or using proper retanning auxiliaries can decrease the electrostatic interaction between acrylic resin and crust leather effectively.
2

Studium afinity lepidel do buněčné stěny dřeva na submikrostrukturní úrovni / Study of the adheisve affinity into the wood cell wall at the sub-microstructural level

Mitrenga, Ondřej January 2019 (has links)
This thesis focuses on the problematic of adhesive affinity into wood cell wall at the sub-microstructural level. The main subject of this thesis is research work of scholarly articles focused on the penetration of resins and polymers into the cell wall of the wood. In contains a description of the principles on which the used methods are based, and a summary of the results achieved. In the experiment, several method were used to investigate the possible penetration of selected methods adhesives into the structure of the cell wall. These are fluorescence microscopy, confocal microscopy, scannin electron microscopy (SEM) and transmission electron microscopy (TEM).
3

Methods for characterizing mechanical properties of wood cell walls via nanoindentation

Meng, Yujie 01 August 2010 (has links)
Nanoindentation is a method of contacting a material whose mechanical properties are unknown with another material whose properties are known. Nanoindentation has the advantage of being able to probe a material’s microstructure while being sensitive enough to detect variations in mechanical properties. However, nanoindentation has some limitations as a testing technique due to the specific formation and structure of some biomaterials. The main objective of this research is to identify any factors that influence the nanoindentation measurement of wood cell walls (a typical biomaterial). The function of the embedding media in describing the properties of wood cells is poorly understood. This research demonstrated that Spurr’s resin, when diffused into wood cell wall during the embedding process, enhanced both the Young’s modulus and hardness of the cell walls. A substitute sample preparation method was developed to avoid this resin penetration into cell wall and was determined to be both effective and easy to perform. The nanoindentation procedure involves the application of a monitor and an analysis of the load-displacement behavior and the response in the material. It can be anticipated that various ways of loading, including the maximum force, the loading time, and others, will cause a variety of mechanical properties. Thus, our second aim was to study the effect of load function on nanoindentation measurement in wood. It was discovered that a fast loading rate contributed to greater contact depth and lower hardness. Increasing the holding time decreased measured values for both Young’s modulus and hardness. However, no significant difference of Young’s modulus and hardness among three loading functions with different unloading rates. The final part of the research was to study the effect of moisture content on the micromechanical properties of wood material. Several nanoindentations were performed on the wood cell wall while varying the moisture content of wood. Results indicated that both the Young’s modulus and hardness decreased significantly with an increase of moisture content. A rheology model was developed to describe the nanoindentation behaviors of wood cell walls at different moisture contents. Five parameters were extracted from Burger’s model, and the relationships among those five parameters were quantified.
4

Methods for characterizing mechanical properties of wood cell walls via nanoindentation

Meng, Yujie 01 August 2010 (has links)
Nanoindentation is a method of contacting a material whose mechanical properties are unknown with another material whose properties are known. Nanoindentation has the advantage of being able to probe a material’s microstructure while being sensitive enough to detect variations in mechanical properties. However, nanoindentation has some limitations as a testing technique due to the specific formation and structure of some biomaterials. The main objective of this research is to identify any factors that influence the nanoindentation measurement of wood cell walls (a typical biomaterial).The function of the embedding media in describing the properties of wood cells is poorly understood. This research demonstrated that Spurr’s resin, when diffused into wood cell wall during the embedding process, enhanced both the Young’s modulus and hardness of the cell walls. A substitute sample preparation method was developed to avoid this resin penetration into cell wall and was determined to be both effective and easy to perform.The nanoindentation procedure involves the application of a monitor and an analysis of the load-displacement behavior and the response in the material. It can be anticipated that various ways of loading, including the maximum force, the loading time, and others, will cause a variety of mechanical properties. Thus, our second aim was to study the effect of load function on nanoindentation measurement in wood. It was discovered that a fast loading rate contributed to greater contact depth and lower hardness. Increasing the holding time decreased measured values for both Young’s modulus and hardness. However, no significant difference of Young’s modulus and hardness among three loading functions with different unloading rates.The final part of the research was to study the effect of moisture content on the micromechanical properties of wood material. Several nanoindentations were performed on the wood cell wall while varying the moisture content of wood. Results indicated that both the Young’s modulus and hardness decreased significantly with an increase of moisture content. A rheology model was developed to describe the nanoindentation behaviors of wood cell walls at different moisture contents. Five parameters were extracted from Burger’s model, and the relationships among those five parameters were quantified.

Page generated in 0.0971 seconds