• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 46
  • 46
  • 16
  • 15
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Evaluation of the Dupont Access Bridge

Chapman, David Pendleton, January 2005 (has links) (PDF)
Thesis (M.S.) -- University of Tennessee, Knoxville, 2005. / Title from title page screen (viewed on June 30, 2005). Thesis advisor: J. Harold Deatherage. Document formatted into pages (vii, 43 p. : ill. (some col.)). Vita. Includes bibliographical references (p. 41-42).
42

Application of a biomechanical finite element spine model to the vicious cycle scoliosis growth theory evaluation of improved FEA geometry and materials assignment /

Fok, Jonathan Winfield. January 2009 (has links)
Thesis (M.Sc.)--University of Alberta, 2009. / Title from pdf file main screen (viewed on August 13, 2009). "A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science, Department of Mechanical Engineering , University of Alberta." Includes bibliographical references.
43

Rectification of 2-D to 3-D finite element analysis of buried concrete arches under discrete loading /

Aagard, Adam D., January 2007 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Civil and Environmental Engineering, 2007. / Includes bibliographical references (83-84).
44

Mechanotransduction in Engineered Cartilaginous Tissues: In Vitro Oscillatory Tensile Loading

Vanderploeg, Eric James 19 May 2006 (has links)
Disease and degeneration of articular cartilage and fibrocartilage tissues severely compromise the quality of life for millions of people. Although current surgical repair techniques can address symptoms in the short term, they do not adequately treat degenerative joint diseases such as osteoarthritis. Thus, novel tissue engineering strategies may be necessary to combat disease progression and repair or replace damaged tissue. Both articular cartilage and the meniscal fibrocartilage in the knee joint are subjected to a complex mechanical environment consisting of compressive, shear, and tensile forces. Therefore, engineered replacement tissues must be both mechanically and biologically competent to function after implantation. The goal of this work was to investigate the effects of oscillatory tensile loading on three dimensional engineered cartilaginous tissues in an effort to elucidate important aspects of chondrocyte and fibrochondrocyte mechanobiology. To investigate the metabolic responses of articular chondrocytes and meniscal fibrochondrocytes to oscillatory tensile loading, various protocols were used to identify stimulatory parameters. Several days of continuously applied tensile loading inhibited extracellular matrix metabolism, whereas short durations and intermittently applied loading could stimulate matrix production. Subpopulations of chondrocytes, separated based on their zonal origin within the tissue, differentially responded to tensile loading. Proteoglycan synthesis was enhanced in superficial zone cells, but the molecular structure of these molecules was not affected. In contrast, neither total proteoglycan nor protein synthesis levels of middle and deep zone chondrocytes were substantially affected by tensile loading; however, the sizes of these new matrix molecules were altered. Up to 14 days of intermittently applied oscillatory tensile loading induced modest increases in construct mechanical properties, but longer durations adversely affected these mechanical properties and increased degradative enzyme activity. These results provide insights into cartilage and fibrocartilage mechanobiology by elucidating cellular responses to tensile mechanical stimulation, which previously had not been widely explored for these tissues. Understanding the role that mechanical stimuli such as tension can play in the generation of engineered cartilaginous tissues will further the goal of developing successful treatment strategies for degenerative joint diseases.
45

Practical modeling for load paths in a realistic, light-frame wood house

Pfretzschner, Kathryn S. 05 September 2012 (has links)
The objective of this study was to develop and validate practical modeling methods for investigating load paths and system behavior in a realistic, light-frame wood structure. The modeling methods were validated against full-scale tests on subassemblies and an L-shaped house. The model of the L-shaped house was then modified and used to investigate the effects of re-entrant corners, wall openings and gable-end retrofits on system behavior and load paths. Results from this study showed that the effects of adding re-entrant corners and wall openings on uplift load distributions were dependent on the orientation of the trusses with respect to the walls. Openings added to walls parallel to the trusses had the least effect on loads carried by the remaining walls in the building. Varying re-entrant corner dimensions of the L-shaped house under ASCE 7-05 (ASCE 2005) design wind loads caused increasing degrees of torsion throughout the house, depending on the relative location and stiffness of the in-plane walls (parallel to the applied wind loads) as well as the assumed direction of the wind loads. Balancing the stiffness of the walls on either side of the house with the largest re-entrant corner helped to decrease torsion in the structure somewhat. Finally, although previous full-scale tests on gable-end sections verified the effectiveness of the gable-end retrofit that was recently adopted into the 2010 Florida building code, questions remained about the effects of the retrofit on torsion in a full building. The current study found that adding the gable-end retrofits to the L-shaped house did not cause additional torsion. / Graduation date: 2013
46

Structural reliability of offshore wind turbines

Agarwal, Puneet, 1977- 31 August 2012 (has links)
Statistical extrapolation is required to predict extreme loads, associated with a target return period, for offshore wind turbines. In statistical extrapolation, “short-term" distributions of the load random variable(s) conditional on the environment are integrated with the joint probability distribution of environmental random variables (from wind, waves, current etc.) to obtain the so-called “long-term" distribution, from which long-term loads may be obtained for any return period. The accurate prediction of long-term extreme loads for offshore wind turbines, using efficient extrapolation procedures, is our main goal. While loads data, needed for extrapolation, are obtained by simulations in a design scenario, field data can be valuable for understanding the offshore environment and the resulting turbine response. We use limited field data from a 2MW turbine at the Blyth site in the United Kingdom, and study the influence of contrasting environmental (wind) regimes and associated waves at this site on long-term loads, derived using extrapolation. This study also highlights the need for efficient extrapolation procedures and for modeling nonlinear waves at sites with shallow water depths. An important first step in extrapolation is to establish robust short-term distributions of load extremes. Using data from simulations of a 5MW onshore turbine model, we compare empirical short-term load distributions when two alternative models for extremes--global and block maxima--are used. We develop a convergence criterion, based on controlling the uncertainty in rare load fractiles, which serves to assess whether or not an adequate number of simulations has been performed. To establish long-term loads for a 5MW offshore wind turbine, we employ an inverse reliability approach, which is shown to predict reasonably accurate long-term loads, compared to a more expensive direct integration approach. We show that blade pitching control actions can be a major source of response variability, due to which a large number of simulations may be required to obtain stable tails of short-term load distributions, and to predict accurate ultimate loads. We address model uncertainty as it pertains to wave models. We investigate the effect of using irregular nonlinear (second-order) waves, compared to irregular linear waves, on loads for an offshore wind turbine. We incorporate this nonlinear irregular wave model into a procedure for integrated wind-wave-response analysis of offshore wind turbines. We show that computed loads are generally somewhat larger with nonlinear waves and, hence, that modeling nonlinear waves is important is response simulations of offshore wind turbines and prediction of long-term loads. / text

Page generated in 0.0322 seconds